Modulating electronic structure of interfacial Fe sites in Fe2N/CoFe2O4 nano-heterostructure for enhancing corrosion-resistance and oxygen electrocatalysis in zinc-air battery

材料科学 过电位 氮化物 异质结 电催化剂 化学工程 化学 光电子学 电极 纳米技术 电化学 物理化学 工程类 图层(电子)
作者
Xiaoqin Xu,Mingyang Li,Yao Nie,Cheng Wang,Wei Wang,Chun‐Tao Liu,Xinyu Wang,Zhuang Cai,Xiaofeng Liu,Sichen Huo,Bin Liu,Jinlong Zou
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:471: 144639-144639 被引量:5
标识
DOI:10.1016/j.cej.2023.144639
摘要

Interface engineering can regulate electronic structure of transition-metal nitrides to promote their electrocatalytic activities. However, design of iron nitride (Fe2N)-based electrocatalytic interface with desirable properties is still challenging. Here, an in-situ nucleation strategy is developed to construct the highly-dispersed Fe2N/spinal (CoFe2O4) heterojunctions to optimize the electro-conductivity and activity. The heterostructure exhibits robust activities towards ORR (half-wave potential, 0.903 V) and OER (overpotential, 300 mV). Interfacial interactions between Fe2N and CoFe2O4 mitigate the corrosion (leaching) and severe agglomeration of active components in harsh environments to stabilize the electrocatalytic activity, maintaining the integrity of heterostructure and the sustainable exposure of active sites. Theorical calculations confirm the feasibility of incorporating Fe2N into basal plane of spinal lattice (Fe2N (0 0 2) and CoFe2O4 (4 0 0) is well matched). Modulated electronic state optimizes the adsorption/desorption strength of O-intermediates on the interfacial Fe-sites (the main active sites) of Fe2N/CoFe2O4 for both ORR and OER. Strong coupling of Fe2N and CoFe2O4 bolsters the charge-transfer across the interfaces to substantially accelerate the ORR/OER kinetics. Notably, by vital of a small potential-gap (0.634 V), it displays excellent power-density (225 mW cm−2) and cycling-stability (280 h) in zinc-air battery. This work enriches the understanding of electronic structure modulation of hetero-structured nitride/spinel-based electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旧时青完成签到,获得积分10
1秒前
36456657应助科研通管家采纳,获得50
1秒前
daodao应助科研通管家采纳,获得10
1秒前
羊东蒽应助科研通管家采纳,获得10
1秒前
羊东蒽应助科研通管家采纳,获得10
1秒前
丿小智灬应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
阿萨大大撒撒旦请问完成签到 ,获得积分10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
枫叶应助科研通管家采纳,获得10
1秒前
Schiller应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
阳光的芯发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
36456657应助科研通管家采纳,获得10
1秒前
羊东蒽应助科研通管家采纳,获得10
1秒前
灵试巧开完成签到 ,获得积分10
2秒前
宫冷雁完成签到,获得积分10
2秒前
落后蓝天完成签到 ,获得积分10
2秒前
荔枝完成签到 ,获得积分10
2秒前
Pipper完成签到,获得积分10
4秒前
碧蓝丹烟发布了新的文献求助10
5秒前
开心快乐发大财完成签到,获得积分20
6秒前
无名花生完成签到 ,获得积分10
6秒前
6秒前
周周完成签到,获得积分10
7秒前
Jeff完成签到 ,获得积分10
7秒前
7秒前
种地的迎曼应助ybh采纳,获得10
7秒前
8秒前
William完成签到 ,获得积分10
8秒前
香蕉觅云应助Jtiger采纳,获得10
9秒前
坚强的缘分完成签到,获得积分10
9秒前
CipherSage应助zzt采纳,获得30
9秒前
大个应助易哒哒采纳,获得10
9秒前
桃紫完成签到,获得积分10
9秒前
鱿鱼完成签到,获得积分10
10秒前
eiland完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455848
求助须知:如何正确求助?哪些是违规求助? 3051068
关于积分的说明 9024345
捐赠科研通 2739839
什么是DOI,文献DOI怎么找? 1502947
科研通“疑难数据库(出版商)”最低求助积分说明 694666
邀请新用户注册赠送积分活动 693476