重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Sparser spiking activity can be better: Feature Refine-and-Mask spiking neural network for event-based visual recognition

尖峰神经网络 计算机科学 事件(粒子物理) 人工智能 特征(语言学) 任务(项目管理) 模式识别(心理学) 人工神经网络 语言学 量子力学 物理 哲学 经济 管理
作者
Man Yao,Hengyu Zhang,Guangshe Zhao,Xiyu Zhang,Dingheng Wang,Gang Cao,Guoqi Li
出处
期刊:Neural Networks [Elsevier]
卷期号:166: 410-423 被引量:6
标识
DOI:10.1016/j.neunet.2023.07.008
摘要

Event-based visual, a new visual paradigm with bio-inspired dynamic perception and μs level temporal resolution, has prominent advantages in many specific visual scenarios and gained much research interest. Spiking neural network (SNN) is naturally suitable for dealing with event streams due to its temporal information processing capability and event-driven nature. However, existing works SNN neglect the fact that the input event streams are spatially sparse and temporally non-uniform, and just treat these variant inputs equally. This situation interferes with the effectiveness and efficiency of existing SNNs. In this paper, we propose the feature Refine-and-Mask SNN (RM-SNN), which has the ability of self-adaption to regulate the spiking response in a data-dependent way. We use the Refine-and-Mask (RM) module to refine all features and mask the unimportant features to optimize the membrane potential of spiking neurons, which in turn drops the spiking activity. Inspired by the fact that not all events in spatio-temporal streams are task-relevant, we execute the RM module in both temporal and channel dimensions. Extensive experiments on seven event-based benchmarks, DVS128 Gesture, DVS128 Gait, CIFAR10-DVS, N-Caltech101, DailyAction-DVS, UCF101-DVS, and HMDB51-DVS demonstrate that under the multi-scale constraints of input time window, RM-SNN can significantly reduce the network average spiking activity rate while improving the task performance. In addition, by visualizing spiking responses, we analyze why sparser spiking activity can be better. Code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助凯不会取名采纳,获得10
1秒前
浮游应助zzz采纳,获得30
1秒前
科目三应助km采纳,获得10
2秒前
3秒前
4秒前
脑洞疼应助lyric采纳,获得10
5秒前
5秒前
向蒋丞选手学习完成签到,获得积分10
6秒前
6秒前
6秒前
qiqiqiqiqi完成签到 ,获得积分10
7秒前
大个应助自然月亮采纳,获得10
7秒前
双休发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
小羊打嗝完成签到,获得积分10
8秒前
落寞白曼发布了新的文献求助10
9秒前
rr发布了新的文献求助10
9秒前
April发布了新的文献求助200
9秒前
10秒前
11秒前
11秒前
嘉悦发布了新的文献求助10
11秒前
cyw发布了新的文献求助20
12秒前
wangxiangqin完成签到 ,获得积分10
12秒前
12秒前
希文完成签到,获得积分10
12秒前
小队发布了新的文献求助10
12秒前
12秒前
一颗蓝莓完成签到 ,获得积分10
13秒前
麦浪发布了新的文献求助50
13秒前
14秒前
14秒前
小椰发布了新的文献求助10
15秒前
15秒前
zxin完成签到 ,获得积分10
16秒前
yy完成签到,获得积分10
16秒前
小小橙完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699