Sparser spiking activity can be better: Feature Refine-and-Mask spiking neural network for event-based visual recognition

尖峰神经网络 计算机科学 事件(粒子物理) 人工智能 特征(语言学) 任务(项目管理) 模式识别(心理学) 人工神经网络 语言学 量子力学 物理 哲学 经济 管理
作者
Man Yao,Hengyu Zhang,Guangshe Zhao,Xiyu Zhang,Dingheng Wang,Gang Cao,Guoqi Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 410-423 被引量:6
标识
DOI:10.1016/j.neunet.2023.07.008
摘要

Event-based visual, a new visual paradigm with bio-inspired dynamic perception and μs level temporal resolution, has prominent advantages in many specific visual scenarios and gained much research interest. Spiking neural network (SNN) is naturally suitable for dealing with event streams due to its temporal information processing capability and event-driven nature. However, existing works SNN neglect the fact that the input event streams are spatially sparse and temporally non-uniform, and just treat these variant inputs equally. This situation interferes with the effectiveness and efficiency of existing SNNs. In this paper, we propose the feature Refine-and-Mask SNN (RM-SNN), which has the ability of self-adaption to regulate the spiking response in a data-dependent way. We use the Refine-and-Mask (RM) module to refine all features and mask the unimportant features to optimize the membrane potential of spiking neurons, which in turn drops the spiking activity. Inspired by the fact that not all events in spatio-temporal streams are task-relevant, we execute the RM module in both temporal and channel dimensions. Extensive experiments on seven event-based benchmarks, DVS128 Gesture, DVS128 Gait, CIFAR10-DVS, N-Caltech101, DailyAction-DVS, UCF101-DVS, and HMDB51-DVS demonstrate that under the multi-scale constraints of input time window, RM-SNN can significantly reduce the network average spiking activity rate while improving the task performance. In addition, by visualizing spiking responses, we analyze why sparser spiking activity can be better. Code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾翔发布了新的文献求助10
刚刚
1秒前
小明明应助Master_Ye采纳,获得10
1秒前
英俊的铭应助可不采纳,获得10
2秒前
Garfield完成签到,获得积分10
2秒前
无聊的翠芙完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
可乐清欢发布了新的文献求助10
3秒前
tangaohao_123456完成签到,获得积分10
3秒前
4秒前
4秒前
机灵水卉发布了新的文献求助10
4秒前
DARKNESS发布了新的文献求助10
5秒前
5秒前
搜集达人应助qyj采纳,获得10
5秒前
透明人发布了新的文献求助50
5秒前
5秒前
pluto应助紫罗兰花海采纳,获得10
5秒前
乔乔兔发布了新的文献求助10
6秒前
6秒前
司徒水绿完成签到 ,获得积分10
7秒前
8秒前
8秒前
Carlnye完成签到 ,获得积分20
8秒前
9秒前
orixero应助shenzhou9采纳,获得10
9秒前
9秒前
王小橘完成签到,获得积分10
9秒前
10秒前
烟花应助Mely0203采纳,获得10
10秒前
烟花应助Husayn采纳,获得10
10秒前
野性的雍发布了新的文献求助10
10秒前
小香草发布了新的文献求助10
10秒前
可乐清欢完成签到,获得积分20
10秒前
晚来客应助大吉采纳,获得10
11秒前
晃悠猴发布了新的文献求助10
11秒前
友好慕卉完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646