Sparser spiking activity can be better: Feature Refine-and-Mask spiking neural network for event-based visual recognition

尖峰神经网络 计算机科学 事件(粒子物理) 人工智能 特征(语言学) 任务(项目管理) 模式识别(心理学) 人工神经网络 语言学 哲学 物理 管理 量子力学 经济
作者
Man Yao,Hengyu Zhang,Guangshe Zhao,Xiyu Zhang,Dingheng Wang,Gang Cao,Guoqi Li
出处
期刊:Neural Networks [Elsevier]
卷期号:166: 410-423 被引量:6
标识
DOI:10.1016/j.neunet.2023.07.008
摘要

Event-based visual, a new visual paradigm with bio-inspired dynamic perception and μs level temporal resolution, has prominent advantages in many specific visual scenarios and gained much research interest. Spiking neural network (SNN) is naturally suitable for dealing with event streams due to its temporal information processing capability and event-driven nature. However, existing works SNN neglect the fact that the input event streams are spatially sparse and temporally non-uniform, and just treat these variant inputs equally. This situation interferes with the effectiveness and efficiency of existing SNNs. In this paper, we propose the feature Refine-and-Mask SNN (RM-SNN), which has the ability of self-adaption to regulate the spiking response in a data-dependent way. We use the Refine-and-Mask (RM) module to refine all features and mask the unimportant features to optimize the membrane potential of spiking neurons, which in turn drops the spiking activity. Inspired by the fact that not all events in spatio-temporal streams are task-relevant, we execute the RM module in both temporal and channel dimensions. Extensive experiments on seven event-based benchmarks, DVS128 Gesture, DVS128 Gait, CIFAR10-DVS, N-Caltech101, DailyAction-DVS, UCF101-DVS, and HMDB51-DVS demonstrate that under the multi-scale constraints of input time window, RM-SNN can significantly reduce the network average spiking activity rate while improving the task performance. In addition, by visualizing spiking responses, we analyze why sparser spiking activity can be better. Code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助piliayouxia采纳,获得10
1秒前
Superan发布了新的文献求助10
1秒前
大翟发布了新的文献求助10
2秒前
2秒前
传奇3应助端庄白开水采纳,获得10
2秒前
2秒前
嘉树林发布了新的文献求助10
2秒前
小酒窝周周完成签到 ,获得积分10
2秒前
陈佩chenpei完成签到,获得积分10
3秒前
3秒前
王小乔完成签到 ,获得积分10
3秒前
lvhuiqi完成签到,获得积分10
3秒前
Orange应助火星人采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
凤凰应助科研通管家采纳,获得100
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
dfm应助Tonald Yang采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
2331547774发布了新的文献求助10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418877
求助须知:如何正确求助?哪些是违规求助? 4534462
关于积分的说明 14144391
捐赠科研通 4450753
什么是DOI,文献DOI怎么找? 2441377
邀请新用户注册赠送积分活动 1433091
关于科研通互助平台的介绍 1410502