Sparser spiking activity can be better: Feature Refine-and-Mask spiking neural network for event-based visual recognition

尖峰神经网络 计算机科学 事件(粒子物理) 人工智能 特征(语言学) 任务(项目管理) 模式识别(心理学) 人工神经网络 语言学 量子力学 物理 哲学 经济 管理
作者
Man Yao,Hengyu Zhang,Guangshe Zhao,Xiyu Zhang,Dingheng Wang,Gang Cao,Guoqi Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 410-423 被引量:6
标识
DOI:10.1016/j.neunet.2023.07.008
摘要

Event-based visual, a new visual paradigm with bio-inspired dynamic perception and μs level temporal resolution, has prominent advantages in many specific visual scenarios and gained much research interest. Spiking neural network (SNN) is naturally suitable for dealing with event streams due to its temporal information processing capability and event-driven nature. However, existing works SNN neglect the fact that the input event streams are spatially sparse and temporally non-uniform, and just treat these variant inputs equally. This situation interferes with the effectiveness and efficiency of existing SNNs. In this paper, we propose the feature Refine-and-Mask SNN (RM-SNN), which has the ability of self-adaption to regulate the spiking response in a data-dependent way. We use the Refine-and-Mask (RM) module to refine all features and mask the unimportant features to optimize the membrane potential of spiking neurons, which in turn drops the spiking activity. Inspired by the fact that not all events in spatio-temporal streams are task-relevant, we execute the RM module in both temporal and channel dimensions. Extensive experiments on seven event-based benchmarks, DVS128 Gesture, DVS128 Gait, CIFAR10-DVS, N-Caltech101, DailyAction-DVS, UCF101-DVS, and HMDB51-DVS demonstrate that under the multi-scale constraints of input time window, RM-SNN can significantly reduce the network average spiking activity rate while improving the task performance. In addition, by visualizing spiking responses, we analyze why sparser spiking activity can be better. Code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun完成签到,获得积分10
刚刚
Ava应助坦率的寻双采纳,获得10
刚刚
jiao发布了新的文献求助20
刚刚
cola完成签到,获得积分10
刚刚
刚刚
sb完成签到,获得积分10
1秒前
珏珏子完成签到,获得积分10
1秒前
1秒前
包靡靡发布了新的文献求助10
2秒前
2秒前
糟糕的立辉完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
3秒前
小卓想发SCI完成签到,获得积分20
3秒前
tzy完成签到,获得积分10
3秒前
安息香完成签到,获得积分10
4秒前
液氧发布了新的文献求助10
4秒前
暴龙兽发布了新的文献求助10
4秒前
guo完成签到,获得积分10
4秒前
李子园完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
ding应助欣喜寻云采纳,获得10
6秒前
6秒前
刻苦冰颜完成签到,获得积分10
7秒前
共享精神应助糟糕的立辉采纳,获得10
7秒前
7秒前
铁观音完成签到,获得积分10
7秒前
项脊轩发布了新的文献求助10
7秒前
chen发布了新的文献求助10
7秒前
Superman完成签到 ,获得积分10
8秒前
kingwill发布了新的文献求助20
8秒前
文艺乐蕊完成签到,获得积分10
8秒前
8秒前
simon发布了新的文献求助10
9秒前
牛牛牛完成签到,获得积分10
9秒前
情怀应助M先生采纳,获得10
9秒前
10秒前
可口可乐完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498