DifFormer: Multi-Resolutional Differencing Transformer With Dynamic Ranging for Time Series Analysis

计算机科学 时间序列 测距 离群值 变压器 人工智能 数据挖掘 机器学习 量子力学 电信 物理 电压
作者
Bing Li,Wei Cui,Le Zhang,Ce Zhu,Wei Wang,Ivor W. Tsang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (11): 13586-13598 被引量:9
标识
DOI:10.1109/tpami.2023.3293516
摘要

Time series analysis is essential to many far-reaching applications of data science and statistics including economic and financial forecasting, surveillance, and automated business processing. Though being greatly successful of Transformer in computer vision and natural language processing, the potential of employing it as the general backbone in analyzing the ubiquitous times series data has not been fully released yet. Prior Transformer variants on time series highly rely on task-dependent designs and pre-assumed "pattern biases", revealing its insufficiency in representing nuanced seasonal, cyclic, and outlier patterns which are highly prevalent in time series. As a consequence, they can not generalize well to different time series analysis tasks. To tackle the challenges, we propose DifFormer, an effective and efficient Transformer architecture that can serve as a workhorse for a variety of time-series analysis tasks. DifFormer incorporates a novel multi-resolutional differencing mechanism, which is able to progressively and adaptively make nuanced yet meaningful changes prominent, meanwhile, the periodic or cyclic patterns can be dynamically captured with flexible lagging and dynamic ranging operations. Extensive experiments demonstrate DifFormer significantly outperforms state-of-the-art models on three essential time-series analysis tasks, including classification, regression, and forecasting. In addition to its superior performances, DifFormer also excels in efficiency - a linear time/memory complexity with empirically lower time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
marongzhi发布了新的文献求助10
3秒前
4秒前
Jenny完成签到,获得积分10
5秒前
6秒前
感动背包完成签到,获得积分10
6秒前
黑炭球发布了新的文献求助10
7秒前
李健的小迷弟应助Aurora采纳,获得10
8秒前
8秒前
勇敢牛牛发布了新的文献求助10
10秒前
快乐友灵完成签到,获得积分10
10秒前
asdfqwer应助感动背包采纳,获得10
10秒前
11秒前
拼搏老九发布了新的文献求助10
11秒前
科研百晓生完成签到 ,获得积分10
11秒前
英姑应助痴情的寒云采纳,获得10
12秒前
hahaha发布了新的文献求助10
12秒前
12秒前
Owen应助风中的非笑采纳,获得10
12秒前
13秒前
13秒前
小鸣完成签到 ,获得积分10
15秒前
16秒前
16秒前
凹凸先森发布了新的文献求助10
16秒前
16秒前
Aurora发布了新的文献求助10
17秒前
勇敢牛牛完成签到,获得积分10
17秒前
Lucas应助哭泣乌采纳,获得10
17秒前
是鑫鑫发布了新的文献求助10
18秒前
19秒前
杨自强发布了新的文献求助10
20秒前
20秒前
慧慧发布了新的文献求助10
21秒前
小马甲应助不攻自破采纳,获得10
21秒前
21秒前
ding应助stinkyfish采纳,获得10
22秒前
22秒前
脑洞疼应助葡萄嘎嘣采纳,获得10
23秒前
小马甲应助吾日三省吾身采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962835
求助须知:如何正确求助?哪些是违规求助? 3508752
关于积分的说明 11142844
捐赠科研通 3241587
什么是DOI,文献DOI怎么找? 1791624
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803540