DifFormer: Multi-Resolutional Differencing Transformer With Dynamic Ranging for Time Series Analysis

计算机科学 时间序列 测距 离群值 变压器 人工智能 数据挖掘 机器学习 量子力学 电信 物理 电压
作者
Bing Li,Wei Cui,Le Zhang,Ce Zhu,Wei Wang,Ivor W. Tsang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13586-13598 被引量:9
标识
DOI:10.1109/tpami.2023.3293516
摘要

Time series analysis is essential to many far-reaching applications of data science and statistics including economic and financial forecasting, surveillance, and automated business processing. Though being greatly successful of Transformer in computer vision and natural language processing, the potential of employing it as the general backbone in analyzing the ubiquitous times series data has not been fully released yet. Prior Transformer variants on time series highly rely on task-dependent designs and pre-assumed "pattern biases", revealing its insufficiency in representing nuanced seasonal, cyclic, and outlier patterns which are highly prevalent in time series. As a consequence, they can not generalize well to different time series analysis tasks. To tackle the challenges, we propose DifFormer, an effective and efficient Transformer architecture that can serve as a workhorse for a variety of time-series analysis tasks. DifFormer incorporates a novel multi-resolutional differencing mechanism, which is able to progressively and adaptively make nuanced yet meaningful changes prominent, meanwhile, the periodic or cyclic patterns can be dynamically captured with flexible lagging and dynamic ranging operations. Extensive experiments demonstrate DifFormer significantly outperforms state-of-the-art models on three essential time-series analysis tasks, including classification, regression, and forecasting. In addition to its superior performances, DifFormer also excels in efficiency - a linear time/memory complexity with empirically lower time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
开心的眼睛完成签到,获得积分10
3秒前
作业对不起应助Mangues采纳,获得30
4秒前
5秒前
丘比特应助dd采纳,获得10
6秒前
11111发布了新的文献求助10
6秒前
林搞搞完成签到,获得积分10
6秒前
7秒前
Mcarry发布了新的文献求助20
7秒前
7秒前
liusong发布了新的文献求助10
10秒前
轻松凌柏完成签到 ,获得积分10
11秒前
yating发布了新的文献求助10
11秒前
大老黑发布了新的文献求助10
13秒前
14秒前
liusong完成签到,获得积分10
15秒前
七七完成签到,获得积分10
17秒前
17秒前
Nowind完成签到,获得积分10
18秒前
19秒前
21秒前
21秒前
21秒前
Baccano发布了新的文献求助10
22秒前
研友_8WMY7n完成签到 ,获得积分10
23秒前
大老黑完成签到,获得积分10
23秒前
24秒前
dd发布了新的文献求助10
25秒前
乐乐应助清新的幼旋采纳,获得10
25秒前
25秒前
小二郎应助violet采纳,获得10
26秒前
29秒前
cadet发布了新的文献求助10
29秒前
29秒前
Pastime发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
zh完成签到,获得积分10
31秒前
dd完成签到,获得积分20
31秒前
Jasper应助唐展通采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812