DifFormer: Multi-Resolutional Differencing Transformer With Dynamic Ranging for Time Series Analysis

计算机科学 时间序列 测距 离群值 变压器 人工智能 数据挖掘 机器学习 量子力学 电信 物理 电压
作者
Bing Li,Wei Cui,Le Zhang,Ce Zhu,Wei Wang,Ivor W. Tsang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13586-13598 被引量:9
标识
DOI:10.1109/tpami.2023.3293516
摘要

Time series analysis is essential to many far-reaching applications of data science and statistics including economic and financial forecasting, surveillance, and automated business processing. Though being greatly successful of Transformer in computer vision and natural language processing, the potential of employing it as the general backbone in analyzing the ubiquitous times series data has not been fully released yet. Prior Transformer variants on time series highly rely on task-dependent designs and pre-assumed "pattern biases", revealing its insufficiency in representing nuanced seasonal, cyclic, and outlier patterns which are highly prevalent in time series. As a consequence, they can not generalize well to different time series analysis tasks. To tackle the challenges, we propose DifFormer, an effective and efficient Transformer architecture that can serve as a workhorse for a variety of time-series analysis tasks. DifFormer incorporates a novel multi-resolutional differencing mechanism, which is able to progressively and adaptively make nuanced yet meaningful changes prominent, meanwhile, the periodic or cyclic patterns can be dynamically captured with flexible lagging and dynamic ranging operations. Extensive experiments demonstrate DifFormer significantly outperforms state-of-the-art models on three essential time-series analysis tasks, including classification, regression, and forecasting. In addition to its superior performances, DifFormer also excels in efficiency - a linear time/memory complexity with empirically lower time consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juphen2发布了新的文献求助10
1秒前
垃圾筐发布了新的文献求助10
1秒前
张茜涵发布了新的文献求助10
1秒前
2秒前
眼睛大怜容完成签到 ,获得积分10
2秒前
南寻完成签到,获得积分10
2秒前
科研通AI6应助lll采纳,获得10
3秒前
英姑应助qiuhai采纳,获得10
3秒前
李爱国应助濮阳香采纳,获得10
3秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
feliciaaa完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
汉堡包应助洛伊儿采纳,获得10
11秒前
万能图书馆应助wang采纳,获得10
13秒前
qiuhai发布了新的文献求助10
14秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
科研通AI6应助lizhiqian2024采纳,获得10
17秒前
blue完成签到 ,获得积分10
17秒前
领导范儿应助lizhiqian2024采纳,获得10
18秒前
18秒前
Joey完成签到,获得积分10
18秒前
整齐墨镜应助汤哈哈哈哈采纳,获得10
19秒前
Akim应助汤哈哈哈哈采纳,获得10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
阿玖完成签到 ,获得积分10
20秒前
超级的金毛完成签到,获得积分10
20秒前
1073980795发布了新的文献求助10
20秒前
20秒前
Yep0672完成签到,获得积分10
21秒前
南桥枝完成签到 ,获得积分10
21秒前
23秒前
垃圾筐完成签到,获得积分10
23秒前
科目三应助qiuhai采纳,获得10
24秒前
打打应助balabala采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666290
求助须知:如何正确求助?哪些是违规求助? 4880818
关于积分的说明 15116881
捐赠科研通 4825362
什么是DOI,文献DOI怎么找? 2583279
邀请新用户注册赠送积分活动 1537446
关于科研通互助平台的介绍 1495652