已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DifFormer: Multi-Resolutional Differencing Transformer With Dynamic Ranging for Time Series Analysis

计算机科学 时间序列 测距 离群值 变压器 人工智能 数据挖掘 机器学习 量子力学 电信 物理 电压
作者
Bing Li,Wei Cui,Le Zhang,Ce Zhu,Wei Wang,Ivor W. Tsang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13586-13598 被引量:9
标识
DOI:10.1109/tpami.2023.3293516
摘要

Time series analysis is essential to many far-reaching applications of data science and statistics including economic and financial forecasting, surveillance, and automated business processing. Though being greatly successful of Transformer in computer vision and natural language processing, the potential of employing it as the general backbone in analyzing the ubiquitous times series data has not been fully released yet. Prior Transformer variants on time series highly rely on task-dependent designs and pre-assumed "pattern biases", revealing its insufficiency in representing nuanced seasonal, cyclic, and outlier patterns which are highly prevalent in time series. As a consequence, they can not generalize well to different time series analysis tasks. To tackle the challenges, we propose DifFormer, an effective and efficient Transformer architecture that can serve as a workhorse for a variety of time-series analysis tasks. DifFormer incorporates a novel multi-resolutional differencing mechanism, which is able to progressively and adaptively make nuanced yet meaningful changes prominent, meanwhile, the periodic or cyclic patterns can be dynamically captured with flexible lagging and dynamic ranging operations. Extensive experiments demonstrate DifFormer significantly outperforms state-of-the-art models on three essential time-series analysis tasks, including classification, regression, and forecasting. In addition to its superior performances, DifFormer also excels in efficiency - a linear time/memory complexity with empirically lower time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨嘉琪完成签到 ,获得积分10
1秒前
Criminology34应助沈书采纳,获得10
2秒前
JWang完成签到,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
3秒前
sober发布了新的文献求助10
3秒前
7秒前
IfItheonlyone完成签到 ,获得积分10
8秒前
8秒前
MetalHead完成签到,获得积分10
10秒前
国医大师陈XX完成签到 ,获得积分20
10秒前
11秒前
13秒前
忧郁哈密瓜完成签到,获得积分20
14秒前
18秒前
18秒前
20秒前
Owen应助何佳采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
22秒前
23秒前
Cisplatin发布了新的文献求助10
24秒前
科研通AI6应助sober采纳,获得10
24秒前
muyang发布了新的文献求助30
24秒前
25秒前
研友_VZG7GZ应助lan采纳,获得10
26秒前
通天塔发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
谦让鹏涛发布了新的文献求助10
30秒前
harik完成签到 ,获得积分10
32秒前
孤独如曼完成签到 ,获得积分10
32秒前
研友_Z729Mn发布了新的文献求助10
33秒前
33秒前
33秒前
阿花发布了新的文献求助10
34秒前
Chen完成签到 ,获得积分10
34秒前
何佳发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418087
求助须知:如何正确求助?哪些是违规求助? 4533775
关于积分的说明 14142248
捐赠科研通 4450059
什么是DOI,文献DOI怎么找? 2441069
邀请新用户注册赠送积分活动 1432830
关于科研通互助平台的介绍 1410030