已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DifFormer: Multi-Resolutional Differencing Transformer With Dynamic Ranging for Time Series Analysis

计算机科学 时间序列 测距 离群值 变压器 人工智能 数据挖掘 机器学习 电信 物理 量子力学 电压
作者
Bing Li,Wei Cui,Le Zhang,Ce Zhu,Wei Wang,Ivor W. Tsang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13586-13598 被引量:6
标识
DOI:10.1109/tpami.2023.3293516
摘要

Time series analysis is essential to many far-reaching applications of data science and statistics including economic and financial forecasting, surveillance, and automated business processing. Though being greatly successful of Transformer in computer vision and natural language processing, the potential of employing it as the general backbone in analyzing the ubiquitous times series data has not been fully released yet. Prior Transformer variants on time series highly rely on task-dependent designs and pre-assumed "pattern biases", revealing its insufficiency in representing nuanced seasonal, cyclic, and outlier patterns which are highly prevalent in time series. As a consequence, they can not generalize well to different time series analysis tasks. To tackle the challenges, we propose DifFormer, an effective and efficient Transformer architecture that can serve as a workhorse for a variety of time-series analysis tasks. DifFormer incorporates a novel multi-resolutional differencing mechanism, which is able to progressively and adaptively make nuanced yet meaningful changes prominent, meanwhile, the periodic or cyclic patterns can be dynamically captured with flexible lagging and dynamic ranging operations. Extensive experiments demonstrate DifFormer significantly outperforms state-of-the-art models on three essential time-series analysis tasks, including classification, regression, and forecasting. In addition to its superior performances, DifFormer also excels in efficiency - a linear time/memory complexity with empirically lower time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小蓝采纳,获得10
1秒前
2秒前
小布完成签到,获得积分10
3秒前
陈民发布了新的文献求助10
4秒前
4秒前
战神林北发布了新的文献求助10
6秒前
小次完成签到,获得积分10
6秒前
didida完成签到,获得积分10
7秒前
曰比的崛起完成签到,获得积分10
8秒前
绝不从良完成签到,获得积分10
10秒前
10秒前
qq发布了新的文献求助10
10秒前
wykion完成签到,获得积分10
12秒前
Lucas应助半截神经病采纳,获得10
13秒前
yiyo发布了新的文献求助10
15秒前
细心映寒完成签到 ,获得积分10
16秒前
17秒前
Eva111完成签到,获得积分10
17秒前
18秒前
18秒前
Lily0126发布了新的文献求助10
21秒前
21秒前
xxxhhh发布了新的文献求助10
22秒前
Jasper应助粉色棉毛裤采纳,获得10
23秒前
深情安青应助一杯茶采纳,获得10
23秒前
顾矜应助wualexandra采纳,获得10
24秒前
kokoko完成签到,获得积分10
25秒前
aaaaaa完成签到,获得积分10
25秒前
凄凉山谷的风完成签到,获得积分10
26秒前
27秒前
27秒前
许七安完成签到,获得积分10
28秒前
执着俊驰完成签到 ,获得积分10
28秒前
科目三应助战神林北采纳,获得10
29秒前
研友_nEoDm8发布了新的文献求助10
31秒前
32秒前
刘茂甫发布了新的文献求助10
33秒前
科研通AI2S应助烂漫的豆芽采纳,获得10
35秒前
Ava应助烂漫的豆芽采纳,获得10
35秒前
传奇3应助烂漫的豆芽采纳,获得10
35秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171307
求助须知:如何正确求助?哪些是违规求助? 2822210
关于积分的说明 7938464
捐赠科研通 2482717
什么是DOI,文献DOI怎么找? 1322709
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627