DifFormer: Multi-Resolutional Differencing Transformer With Dynamic Ranging for Time Series Analysis

计算机科学 时间序列 测距 离群值 变压器 人工智能 数据挖掘 机器学习 量子力学 电信 物理 电压
作者
Bing Li,Wei Cui,Le Zhang,Ce Zhu,Wei Wang,Ivor W. Tsang,Joey Tianyi Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13586-13598 被引量:9
标识
DOI:10.1109/tpami.2023.3293516
摘要

Time series analysis is essential to many far-reaching applications of data science and statistics including economic and financial forecasting, surveillance, and automated business processing. Though being greatly successful of Transformer in computer vision and natural language processing, the potential of employing it as the general backbone in analyzing the ubiquitous times series data has not been fully released yet. Prior Transformer variants on time series highly rely on task-dependent designs and pre-assumed "pattern biases", revealing its insufficiency in representing nuanced seasonal, cyclic, and outlier patterns which are highly prevalent in time series. As a consequence, they can not generalize well to different time series analysis tasks. To tackle the challenges, we propose DifFormer, an effective and efficient Transformer architecture that can serve as a workhorse for a variety of time-series analysis tasks. DifFormer incorporates a novel multi-resolutional differencing mechanism, which is able to progressively and adaptively make nuanced yet meaningful changes prominent, meanwhile, the periodic or cyclic patterns can be dynamically captured with flexible lagging and dynamic ranging operations. Extensive experiments demonstrate DifFormer significantly outperforms state-of-the-art models on three essential time-series analysis tasks, including classification, regression, and forecasting. In addition to its superior performances, DifFormer also excels in efficiency - a linear time/memory complexity with empirically lower time consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助无情丹秋采纳,获得10
1秒前
sarah发布了新的文献求助20
2秒前
4秒前
4秒前
4秒前
4秒前
四玖玖发布了新的文献求助10
5秒前
sunji发布了新的文献求助10
5秒前
6秒前
6秒前
MchemG应助sensen采纳,获得10
6秒前
7秒前
7秒前
QiuQiu发布了新的文献求助10
8秒前
latata发布了新的文献求助10
8秒前
zt发布了新的文献求助10
9秒前
李魏发布了新的文献求助10
9秒前
Ccwyhk发布了新的文献求助10
9秒前
LDDLleor完成签到,获得积分10
10秒前
10秒前
mmz完成签到 ,获得积分10
11秒前
chen完成签到 ,获得积分10
12秒前
余三心发布了新的文献求助10
12秒前
Lucas应助coollz采纳,获得10
13秒前
beckvanm完成签到,获得积分10
14秒前
仁爱太阳发布了新的文献求助20
14秒前
天天快乐应助大反应釜采纳,获得10
14秒前
栖风完成签到,获得积分10
14秒前
英姑应助渺渺采纳,获得10
15秒前
15秒前
16秒前
传奇3应助苏苏采纳,获得10
17秒前
缓慢逍遥完成签到 ,获得积分10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
超级幼旋应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329