A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture

分割 人工智能 特征(语言学) 计算机科学 水产养殖 模式识别(心理学) 聚类分析 图像分割 像素 特征提取 计算机视觉 渔业 生物 哲学 语言学
作者
Ling Yang,Yingyi Chen,Tao Shen,Huihui Yu,Daoliang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108005-108005 被引量:7
标识
DOI:10.1016/j.compag.2023.108005
摘要

Quantification of fish feeding behavior from an image is crucial for achieving smart feeding in industrial aquaculture. Because fish images provide a wealth of spatial information about their behavior, which can be used to determine the fish feeding intensity. However, most studies only use a single spatial feature to quantify fish feeding behavior. For the extraction of multiple spatial feature indicators, a computational approach is lacking due to image challenges caused by occlusion, overlapping, and clustering during the feeding stage. In this paper, a novel emerging BlendMask-VoNetV2 method is developed to segment two-class fish and distinguish different instance individuals for extracting multiple spatial features. Serial indicators are proposed for analyzing spatial feature variations from the time-series-based videos, such as the number of fish, the number of pixels, and the distance between individual fish. Additionally, we present the first fish dataset with fish occlusion and aggregation for feeding image segmentation in industrial aquaculture. It contains 1038 images consisting of 67,519 instance individuals with pixel annotations for two semantic categories: fish1 (non-occlusion and non-aggregation), and fish2 (occlusion or aggregation). Extensive experiments demonstrate that BlendMask-VoVNetV2 achieves competitive segmentation performance with an accuracy of 83.7% on the feeding dataset, outperforming other instance segmentation algorithms such as SOLOV2, SOTR, ConInst, Mask RCNN.et.al. A distinctive advantage of our idea proposed is beneficial to deal with the problem of inaccurate segmentation caused by severe occlusion and overlapping fish. Finally, the BlendMask-VoVNetV2 method is verified on four videos with non-feeding, strong feeding, medium feeding, and weak feeding. The results show that the method we proposed is effective, which can accurately and objectively depict each moment of the entire feeding process using multiple spatial feature indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666应助LazyClouds采纳,获得10
刚刚
DWRH发布了新的文献求助10
1秒前
巴啦啦完成签到 ,获得积分10
2秒前
3秒前
scm完成签到,获得积分10
7秒前
田野的小家庭完成签到 ,获得积分10
7秒前
宇文宛菡完成签到 ,获得积分10
8秒前
科研鸟发布了新的文献求助10
8秒前
8秒前
张雷应助DWRH采纳,获得10
9秒前
10秒前
霸气的老虎完成签到,获得积分10
10秒前
艾艾完成签到,获得积分20
14秒前
牛牛眉目发布了新的文献求助10
15秒前
Bin_Liu发布了新的文献求助10
15秒前
沐夕完成签到,获得积分10
17秒前
安娜发布了新的文献求助20
20秒前
ca0ca0完成签到,获得积分10
22秒前
cc发布了新的文献求助10
22秒前
666应助科研鸟采纳,获得10
22秒前
帆帆牛完成签到,获得积分10
25秒前
26秒前
一株多肉完成签到,获得积分10
26秒前
顺心绮兰完成签到,获得积分10
27秒前
27秒前
李朋发布了新的文献求助10
31秒前
31秒前
Mr.Jian完成签到,获得积分10
34秒前
34秒前
langhai完成签到,获得积分10
35秒前
36秒前
鱼咬羊发布了新的文献求助10
37秒前
DAZIDAZI02发布了新的文献求助10
37秒前
firefly完成签到,获得积分10
37秒前
cookerlin完成签到,获得积分20
40秒前
Ava应助李朋采纳,获得10
41秒前
超级飞侠完成签到,获得积分20
45秒前
LazyClouds发布了新的文献求助10
46秒前
48秒前
unovember完成签到,获得积分10
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511761
关于积分的说明 11159641
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804374