A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture

分割 人工智能 特征(语言学) 计算机科学 水产养殖 模式识别(心理学) 聚类分析 图像分割 像素 特征提取 计算机视觉 渔业 生物 语言学 哲学
作者
Ling Yang,Yingyi Chen,Tao Shen,Huihui Yu,Daoliang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108005-108005 被引量:7
标识
DOI:10.1016/j.compag.2023.108005
摘要

Quantification of fish feeding behavior from an image is crucial for achieving smart feeding in industrial aquaculture. Because fish images provide a wealth of spatial information about their behavior, which can be used to determine the fish feeding intensity. However, most studies only use a single spatial feature to quantify fish feeding behavior. For the extraction of multiple spatial feature indicators, a computational approach is lacking due to image challenges caused by occlusion, overlapping, and clustering during the feeding stage. In this paper, a novel emerging BlendMask-VoNetV2 method is developed to segment two-class fish and distinguish different instance individuals for extracting multiple spatial features. Serial indicators are proposed for analyzing spatial feature variations from the time-series-based videos, such as the number of fish, the number of pixels, and the distance between individual fish. Additionally, we present the first fish dataset with fish occlusion and aggregation for feeding image segmentation in industrial aquaculture. It contains 1038 images consisting of 67,519 instance individuals with pixel annotations for two semantic categories: fish1 (non-occlusion and non-aggregation), and fish2 (occlusion or aggregation). Extensive experiments demonstrate that BlendMask-VoVNetV2 achieves competitive segmentation performance with an accuracy of 83.7% on the feeding dataset, outperforming other instance segmentation algorithms such as SOLOV2, SOTR, ConInst, Mask RCNN.et.al. A distinctive advantage of our idea proposed is beneficial to deal with the problem of inaccurate segmentation caused by severe occlusion and overlapping fish. Finally, the BlendMask-VoVNetV2 method is verified on four videos with non-feeding, strong feeding, medium feeding, and weak feeding. The results show that the method we proposed is effective, which can accurately and objectively depict each moment of the entire feeding process using multiple spatial feature indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
可爱香槟完成签到,获得积分10
2秒前
csm完成签到,获得积分20
2秒前
orixero应助lofi采纳,获得10
4秒前
九九发布了新的文献求助10
5秒前
yiqifan完成签到,获得积分10
5秒前
zrm关闭了zrm文献求助
5秒前
薄荷梨完成签到 ,获得积分10
5秒前
tusyuki完成签到,获得积分10
5秒前
6秒前
阳光盼山完成签到,获得积分10
6秒前
6秒前
林枫完成签到,获得积分10
7秒前
温柔的姿完成签到,获得积分10
7秒前
7秒前
升学顺利身体健康完成签到,获得积分0
7秒前
叶燕完成签到 ,获得积分20
8秒前
满城烟沙完成签到 ,获得积分0
8秒前
8秒前
腼腆的斓完成签到 ,获得积分10
9秒前
9秒前
认真的灵竹完成签到 ,获得积分10
9秒前
10秒前
百里瓶窑发布了新的文献求助10
11秒前
脑洞疼应助包容的剑采纳,获得10
11秒前
勤恳鸿涛发布了新的文献求助10
12秒前
高定完成签到,获得积分10
12秒前
Owen应助春野与夜采纳,获得10
12秒前
眨眼完成签到,获得积分10
13秒前
大个应助认真的芷蕾采纳,获得10
13秒前
圆圆发布了新的文献求助10
13秒前
黄老牛发布了新的文献求助10
14秒前
14秒前
周周发布了新的文献求助10
15秒前
小蘑菇应助lylyzhl采纳,获得10
16秒前
Beatrice完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842060
求助须知:如何正确求助?哪些是违规求助? 3384246
关于积分的说明 10533237
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709680
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773957