A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture

分割 人工智能 特征(语言学) 计算机科学 水产养殖 模式识别(心理学) 聚类分析 图像分割 像素 特征提取 计算机视觉 渔业 生物 语言学 哲学
作者
Ling Yang,Yingyi Chen,Tao Shen,Huihui Yu,Daoliang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108005-108005 被引量:7
标识
DOI:10.1016/j.compag.2023.108005
摘要

Quantification of fish feeding behavior from an image is crucial for achieving smart feeding in industrial aquaculture. Because fish images provide a wealth of spatial information about their behavior, which can be used to determine the fish feeding intensity. However, most studies only use a single spatial feature to quantify fish feeding behavior. For the extraction of multiple spatial feature indicators, a computational approach is lacking due to image challenges caused by occlusion, overlapping, and clustering during the feeding stage. In this paper, a novel emerging BlendMask-VoNetV2 method is developed to segment two-class fish and distinguish different instance individuals for extracting multiple spatial features. Serial indicators are proposed for analyzing spatial feature variations from the time-series-based videos, such as the number of fish, the number of pixels, and the distance between individual fish. Additionally, we present the first fish dataset with fish occlusion and aggregation for feeding image segmentation in industrial aquaculture. It contains 1038 images consisting of 67,519 instance individuals with pixel annotations for two semantic categories: fish1 (non-occlusion and non-aggregation), and fish2 (occlusion or aggregation). Extensive experiments demonstrate that BlendMask-VoVNetV2 achieves competitive segmentation performance with an accuracy of 83.7% on the feeding dataset, outperforming other instance segmentation algorithms such as SOLOV2, SOTR, ConInst, Mask RCNN.et.al. A distinctive advantage of our idea proposed is beneficial to deal with the problem of inaccurate segmentation caused by severe occlusion and overlapping fish. Finally, the BlendMask-VoVNetV2 method is verified on four videos with non-feeding, strong feeding, medium feeding, and weak feeding. The results show that the method we proposed is effective, which can accurately and objectively depict each moment of the entire feeding process using multiple spatial feature indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧念寒完成签到,获得积分10
3秒前
玉ER完成签到,获得积分10
5秒前
希望天下0贩的0应助wei采纳,获得10
5秒前
北枳完成签到 ,获得积分10
9秒前
地精术士完成签到,获得积分10
10秒前
浙江嘉兴完成签到,获得积分10
10秒前
我是站长才怪应助通~采纳,获得10
12秒前
shiyu完成签到,获得积分10
12秒前
Herman_Chen完成签到,获得积分10
19秒前
Zn应助牛文文采纳,获得10
21秒前
21秒前
22秒前
贤惠的白开水完成签到 ,获得积分10
22秒前
英姑应助林林林采纳,获得10
23秒前
科研小民工应助Anquan采纳,获得30
23秒前
cyt9999发布了新的文献求助10
24秒前
天天快乐应助好难啊采纳,获得10
25秒前
干净的烧鹅完成签到,获得积分10
26秒前
27秒前
27秒前
在人中发布了新的文献求助10
28秒前
28秒前
fls221完成签到,获得积分10
29秒前
Laity完成签到,获得积分10
31秒前
31秒前
健忘捕发布了新的文献求助10
31秒前
林林林发布了新的文献求助10
32秒前
ok完成签到 ,获得积分10
33秒前
乐乐应助wewe采纳,获得30
33秒前
33秒前
拥有八根情丝完成签到 ,获得积分10
34秒前
科研通AI5应助Rex采纳,获得10
35秒前
36秒前
情怀应助樱桃小丸子采纳,获得10
37秒前
好难啊发布了新的文献求助10
38秒前
38秒前
42秒前
43秒前
43秒前
wewe完成签到,获得积分20
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851