A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture

分割 人工智能 特征(语言学) 计算机科学 水产养殖 模式识别(心理学) 聚类分析 图像分割 像素 特征提取 计算机视觉 渔业 生物 语言学 哲学
作者
Ling Yang,Yingyi Chen,Tao Shen,Huihui Yu,Daoliang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108005-108005 被引量:7
标识
DOI:10.1016/j.compag.2023.108005
摘要

Quantification of fish feeding behavior from an image is crucial for achieving smart feeding in industrial aquaculture. Because fish images provide a wealth of spatial information about their behavior, which can be used to determine the fish feeding intensity. However, most studies only use a single spatial feature to quantify fish feeding behavior. For the extraction of multiple spatial feature indicators, a computational approach is lacking due to image challenges caused by occlusion, overlapping, and clustering during the feeding stage. In this paper, a novel emerging BlendMask-VoNetV2 method is developed to segment two-class fish and distinguish different instance individuals for extracting multiple spatial features. Serial indicators are proposed for analyzing spatial feature variations from the time-series-based videos, such as the number of fish, the number of pixels, and the distance between individual fish. Additionally, we present the first fish dataset with fish occlusion and aggregation for feeding image segmentation in industrial aquaculture. It contains 1038 images consisting of 67,519 instance individuals with pixel annotations for two semantic categories: fish1 (non-occlusion and non-aggregation), and fish2 (occlusion or aggregation). Extensive experiments demonstrate that BlendMask-VoVNetV2 achieves competitive segmentation performance with an accuracy of 83.7% on the feeding dataset, outperforming other instance segmentation algorithms such as SOLOV2, SOTR, ConInst, Mask RCNN.et.al. A distinctive advantage of our idea proposed is beneficial to deal with the problem of inaccurate segmentation caused by severe occlusion and overlapping fish. Finally, the BlendMask-VoVNetV2 method is verified on four videos with non-feeding, strong feeding, medium feeding, and weak feeding. The results show that the method we proposed is effective, which can accurately and objectively depict each moment of the entire feeding process using multiple spatial feature indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助wang采纳,获得10
1秒前
木棉发布了新的文献求助10
1秒前
orixero应助莫里耶采纳,获得10
1秒前
跋扈发布了新的文献求助10
2秒前
2秒前
Lucas应助专注的青荷采纳,获得10
2秒前
7秒前
轻舟发布了新的文献求助10
9秒前
botanist完成签到 ,获得积分10
9秒前
小蘑菇应助敏er好学采纳,获得10
10秒前
12秒前
JACS发布了新的文献求助10
14秒前
陈隆完成签到,获得积分10
14秒前
ARESCI完成签到,获得积分10
15秒前
完美世界应助zhangjw2016采纳,获得10
15秒前
若水应助传统的鹏涛采纳,获得10
16秒前
18秒前
18秒前
21秒前
oaix完成签到,获得积分10
21秒前
22秒前
苏蛋蛋i发布了新的文献求助10
22秒前
23秒前
23秒前
科研通AI2S应助crazykite采纳,获得10
23秒前
敏er好学发布了新的文献求助10
23秒前
可爱的函函应助锐哥采纳,获得10
24秒前
25秒前
那一片海完成签到,获得积分10
25秒前
陈隆完成签到,获得积分10
26秒前
26秒前
潘道士完成签到 ,获得积分10
27秒前
29秒前
30秒前
专注的青荷完成签到,获得积分10
33秒前
33秒前
zhangjw2016发布了新的文献求助10
34秒前
炸爽的语言完成签到,获得积分10
34秒前
毛毛虫发布了新的文献求助10
35秒前
35秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596