内质网
心脏纤维化
未折叠蛋白反应
化学
心肌纤维化
细胞生物学
纤维化
生物
生物化学
医学
内科学
作者
Huahua Wang,Xiaoyu Zhang,Jing Wang,Yunyun Zhang,Yingyu Wang,Yunru Peng,Yongfang Ding
标识
DOI:10.1111/1440-1681.13802
摘要
Abstract Diosmetin‐7‐O‐β‐D‐glucopyranoside (Diosmetin‐7‐O‐glucoside) is a natural flavonoid glycoside known to have a therapeutic application for cardiovascular diseases. Cardiac fibrosis is the main pathological change in the end stage of cardiovascular diseases. Endothelial‐mesenchymal transformation (EndMT) induced by endoplasmic reticulum stress (ER stress) via Src pathways is involved in the process of cardiac fibrosis. However, it is unclear whether and how diosmetin‐7‐O‐glucoside regulates EndMT and ER stress to treat cardiac fibrosis. In this study, molecular docking results showed that diosmetin‐7‐O‐glucoside bound well to ER stress and Src pathway markers. Diosmetin‐7‐O‐glucoside suppressed cardiac fibrosis induced by isoprenaline (ISO) and reduced the levels of EndMT, ER stress in mice heart. Primary cardiac microvascular endothelial cells (CMECs) were induced by transforming growth factor‐β1 (TGF‐β1) to perform EndMT. Diosmetin‐7‐O‐glucoside could effectively regulate EndMT and diminish the accumulation of collagen I and collagen III. We also showed that the tube formation in CMECs was restored, and the capacity of migration was partially inhibited. Diosmetin‐7‐O‐glucoside also ameliorated ER stress through the three unfolded protein response branches, as evidenced by organelle structure in transmission electron microscopy images and the expression of protein biomarkers like the glucose‐regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). Further analysis showed that diosmetin‐7‐O‐glucoside could suppress the expression level of Src phosphorylation, then block EndMT with the maintenance of endothelial appearance and endothelial marker expression. These results suggested that the diosmetin‐7‐O‐glucoside can regulate EndMT through ER stress, at least in part via Src‐dependent pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI