Discovering the mechanics of artificial and real meat

人工神经网络 人工智能 各向同性 奥格登 剪切(地质) 数学 压缩(物理) 各向异性 本构方程 计算机科学 材料科学 工程类 物理 结构工程 复合材料 量子力学 有限元法
作者
Skyler R. St. Pierre,Divya Rajasekharan,Ethan C. Darwin,Kevin Linka,Marc E. Levenston,Ellen Kuhl
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:415: 116236-116236 被引量:22
标识
DOI:10.1016/j.cma.2023.116236
摘要

Artificial meat is an eco-friendly alternative to real meat that is marketed to have a similar taste and feel. The mechanical properties of artificial meat significantly influence our perception of taste, but how precisely the mechanics of artificial meat compare to real meat remains insufficiently understood. Here we perform mechanical tension, compression, and shear tests on isotropic artificial meat (Tofurky® Plant-Based Deli Slices), anisotropic artificial meat (Daring™ Chick'n Pieces) and anisotropic real meat (chicken) and analyze the data using constitutive neural networks and automated model discovery. Our study shows that, when deformed by 10%, artificial and real chicken display similar maximum stresses of 21.0 kPa and 21.8 kPa in tension, -7.2 kPa and -16.4 kPa in compression, and 2.4 kPa and 0.9 kPa in shear, while the maximum stresses for tofurky were 28.5 kPa, -38.3 kP, and 5.5 kPa. To discover the mechanics that best explain these data, we consulted two constitutive neural networks of Ogden and Valanis–Landel type. Both networks robustly discover models and parameters to explain the complex nonlinear behavior of artificial and real meat for individual tension, compression, and shear tests, and for all three tests combined. When constrained to the classical neo Hooke, Blatz Ko, and Mooney Rivlin models, both networks discover shear moduli of 94.4 kPa for tofurky, 35.7 kPa for artificial chick'n, and 21.4 kPa for real chicken. Our results suggests that artificial chicken succeeds in reproducing the mechanical properties of real chicken across all loading modes, while tofurky does not, and is about three times stiffer. Strikingly, all three meat products display shear softening and their resistance to shear is about an order of magnitude lower than their resistance to tension and compression. We anticipate our study to inspire more quantitative, mechanistic comparisons of artificial and real meat. Our automated-model-discovery based approach has the potential to inform the design of more authentic meat substitutes with an improved perception of taste, with the ultimate goal to reduce environmental impact, improve animal welfare, and mitigate climate change, while still offering the familiar taste and texture of traditional meat. Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涛ss完成签到 ,获得积分10
2秒前
道衍先一完成签到,获得积分10
3秒前
4秒前
梓辰完成签到 ,获得积分10
4秒前
漫才发布了新的文献求助10
4秒前
hgf应助yxy999采纳,获得50
7秒前
shirley要奋斗完成签到 ,获得积分10
9秒前
strawberry发布了新的文献求助10
10秒前
机灵的觅山完成签到,获得积分20
10秒前
11秒前
指纹抒写年轮完成签到,获得积分10
13秒前
漫才完成签到,获得积分10
14秒前
日常常发布了新的文献求助20
14秒前
hgf应助WangXiaoze采纳,获得10
14秒前
guijunmola完成签到 ,获得积分10
15秒前
Ava应助bbj采纳,获得10
16秒前
ming43完成签到,获得积分10
16秒前
独特冬天完成签到,获得积分10
16秒前
积极天思完成签到 ,获得积分10
18秒前
18秒前
19秒前
wwx完成签到,获得积分10
20秒前
meta完成签到,获得积分10
21秒前
zs18345064562发布了新的文献求助10
23秒前
c123完成签到 ,获得积分10
25秒前
kkk1988发布了新的文献求助10
25秒前
hucheng发布了新的文献求助10
25秒前
烂漫的绝悟完成签到 ,获得积分10
28秒前
28秒前
Akim应助Enoch采纳,获得10
30秒前
strawberry完成签到,获得积分10
32秒前
蜜桃奇迹发布了新的文献求助10
32秒前
彭于晏应助hucheng采纳,获得10
32秒前
35秒前
友好凌波发布了新的文献求助10
36秒前
dingminfeng完成签到 ,获得积分10
38秒前
kk发布了新的文献求助10
38秒前
43秒前
SYLH应助日常常采纳,获得10
47秒前
李健的粉丝团团长应助ZDS采纳,获得10
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731