已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)

结垢 膜污染 人工神经网络 纳滤 微滤 超滤(肾) 膜技术 工艺工程 人工智能 生化工程 计算机科学 机器学习 生物系统 环境科学 工程类 化学 色谱法 生物 生物化学
作者
Waad H. Abuwatfa,Nour AlSawaftah,Naif Darwish,William G. Pitt,Ghaleb A. Husseini
出处
期刊:Membranes [Multidisciplinary Digital Publishing Institute]
卷期号:13 (7): 685-685 被引量:31
标识
DOI:10.3390/membranes13070685
摘要

Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张欢完成签到,获得积分10
1秒前
麦芽发布了新的文献求助10
1秒前
2秒前
3秒前
5秒前
7秒前
zhb1998发布了新的文献求助10
7秒前
木小叶发布了新的文献求助10
8秒前
贝妮戴塔发布了新的文献求助20
9秒前
LLL发布了新的文献求助10
9秒前
star应助小么小采纳,获得10
9秒前
丘比特应助夏依瑶采纳,获得30
10秒前
乙酰水杨酸完成签到,获得积分10
11秒前
TIPHA发布了新的文献求助10
13秒前
14秒前
17秒前
蒋蒋蒋蒋发布了新的文献求助10
17秒前
幸福的含灵完成签到,获得积分10
17秒前
19秒前
深情安青应助陈益凡采纳,获得10
19秒前
19秒前
linda完成签到,获得积分10
19秒前
桐桐应助完美外绣采纳,获得10
20秒前
20秒前
充电宝应助TIPHA采纳,获得10
20秒前
大个应助XIAO QIANG采纳,获得30
20秒前
22秒前
23秒前
万能图书馆应助烟消云散采纳,获得10
24秒前
linda发布了新的文献求助10
24秒前
青年才俊发布了新的文献求助10
25秒前
爆米花应助麦芽采纳,获得10
25秒前
27秒前
28秒前
jasonjiang完成签到 ,获得积分0
29秒前
30秒前
31秒前
Q哈哈哈发布了新的文献求助10
32秒前
酷波er应助linda采纳,获得30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822