A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)

结垢 膜污染 人工神经网络 纳滤 微滤 超滤(肾) 膜技术 工艺工程 人工智能 生化工程 计算机科学 生物系统 环境科学 工程类 化学 色谱法 生物 生物化学
作者
Waad H. Abuwatfa,Nour M. AlSawaftah,Naif Darwish,William G. Pitt,Ghaleb A. Husseini
出处
期刊:Membranes [MDPI AG]
卷期号:13 (7): 685-685 被引量:2
标识
DOI:10.3390/membranes13070685
摘要

Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
real季氢发布了新的文献求助10
1秒前
1秒前
kang12完成签到 ,获得积分10
1秒前
852应助行宇采纳,获得10
1秒前
dada完成签到 ,获得积分20
2秒前
2秒前
2秒前
3秒前
3秒前
zhuxd完成签到,获得积分10
3秒前
5秒前
111完成签到,获得积分10
7秒前
王浩伟完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
Sir.夏季风完成签到,获得积分10
8秒前
8秒前
cmc发布了新的文献求助10
10秒前
T1kz4发布了新的文献求助10
10秒前
11秒前
11秒前
科目三应助wwl采纳,获得10
12秒前
iconcrete应助ivy采纳,获得20
12秒前
real季氢完成签到,获得积分10
13秒前
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
哎嘿应助科研通管家采纳,获得10
14秒前
14秒前
linty应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
15秒前
情怀应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Jasper应助xx采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
没有逗应助科研通管家采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905