A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)

结垢 膜污染 人工神经网络 纳滤 微滤 超滤(肾) 膜技术 工艺工程 人工智能 生化工程 计算机科学 机器学习 生物系统 环境科学 工程类 化学 色谱法 生物 生物化学
作者
Waad H. Abuwatfa,Nour AlSawaftah,Naif Darwish,William G. Pitt,Ghaleb A. Husseini
出处
期刊:Membranes [Multidisciplinary Digital Publishing Institute]
卷期号:13 (7): 685-685 被引量:31
标识
DOI:10.3390/membranes13070685
摘要

Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
江江完成签到,获得积分10
1秒前
111111发布了新的文献求助10
2秒前
2秒前
紧张的幻桃完成签到,获得积分10
2秒前
vincent发布了新的文献求助30
2秒前
善学以致用应助花花屯屯采纳,获得10
3秒前
科研通AI5应助许译匀采纳,获得10
4秒前
111发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
4秒前
youjun完成签到,获得积分10
4秒前
4秒前
欢呼的未来完成签到 ,获得积分10
5秒前
陈某人完成签到,获得积分10
6秒前
科研通AI5应助Reedy采纳,获得10
6秒前
6秒前
7秒前
爆爆爆炸了完成签到 ,获得积分10
8秒前
9秒前
Ycc发布了新的文献求助10
9秒前
刘子健关注了科研通微信公众号
10秒前
TIAMO发布了新的文献求助10
10秒前
王大帅完成签到,获得积分10
11秒前
14秒前
脑洞疼应助fight采纳,获得10
14秒前
14秒前
15秒前
Dai发布了新的文献求助10
15秒前
科研通AI5应助坚定背包采纳,获得10
15秒前
123完成签到,获得积分20
15秒前
孟祥雷发布了新的文献求助10
15秒前
852应助davidwuran采纳,获得10
16秒前
16秒前
zwd发布了新的文献求助10
16秒前
星辰大海应助Guess采纳,获得10
16秒前
求学得识完成签到 ,获得积分10
17秒前
17秒前
尉迟衣发布了新的文献求助10
18秒前
舒萼完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237