A Review on Membrane Fouling Prediction Using Artificial Neural Networks (ANNs)

结垢 膜污染 人工神经网络 纳滤 微滤 超滤(肾) 膜技术 工艺工程 人工智能 生化工程 计算机科学 机器学习 生物系统 环境科学 工程类 化学 色谱法 生物化学 生物
作者
Waad H. Abuwatfa,Nour AlSawaftah,Naif Darwish,William G. Pitt,Ghaleb A. Husseini
出处
期刊:Membranes [Multidisciplinary Digital Publishing Institute]
卷期号:13 (7): 685-685 被引量:31
标识
DOI:10.3390/membranes13070685
摘要

Membrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols. Several models have been developed to predict membrane fouling in pressure-driven processes. These models can be divided into traditional empirical, mechanistic, and artificial intelligence (AI)-based models. Artificial neural networks (ANNs) are powerful tools for nonlinear mapping and prediction, and they can capture complex relationships between input and output variables. In membrane fouling prediction, ANNs can be trained using historical data to predict the fouling rate or other fouling-related parameters based on the process parameters. This review addresses the pertinent literature about using ANNs for membrane fouling prediction. Specifically, complementing other existing reviews that focus on mathematical models or broad AI-based simulations, the present review focuses on the use of AI-based fouling prediction models, namely, artificial neural networks (ANNs) and their derivatives, to provide deeper insights into the strengths, weaknesses, potential, and areas of improvement associated with such models for membrane fouling prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喝呜昂完成签到 ,获得积分10
刚刚
琦琦发布了新的文献求助10
1秒前
科研通AI2S应助thomas采纳,获得10
2秒前
SYLH应助细心的若风采纳,获得10
2秒前
3秒前
Ava应助欣慰的星月采纳,获得10
3秒前
HJX完成签到,获得积分10
4秒前
SciGPT应助ww采纳,获得10
5秒前
6秒前
Cary完成签到,获得积分20
7秒前
爆米花应助韩凡采纳,获得10
7秒前
HJX发布了新的文献求助10
8秒前
8秒前
animenz完成签到,获得积分10
9秒前
去玩儿发布了新的文献求助10
9秒前
完美世界应助星辉采纳,获得10
9秒前
科研发布了新的文献求助10
10秒前
longlulu完成签到,获得积分20
11秒前
12秒前
哈密瓜完成签到,获得积分10
12秒前
琦琦完成签到,获得积分10
13秒前
宿帅帅完成签到,获得积分10
13秒前
SYLH应助韩jl采纳,获得10
14秒前
CR7应助韩jl采纳,获得20
14秒前
14秒前
Gj完成签到,获得积分10
15秒前
Cary发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
Dr.lee发布了新的文献求助10
19秒前
19秒前
welldone发布了新的文献求助10
20秒前
20秒前
Keng发布了新的文献求助30
20秒前
星辉给星辉的求助进行了留言
21秒前
快乐完成签到,获得积分10
22秒前
23秒前
热心的飞兰完成签到,获得积分20
23秒前
阳光下的味道完成签到,获得积分10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128