Utilizing Machine Learning for Rapid Discrimination and Quantification of Volatile Organic Compounds in an Electronic Nose Sensor Array

电子鼻 随机森林 支持向量机 传感器阵列 人工智能 管道(软件) 挥发性有机化合物 机器学习 模式识别(心理学) 计算机科学 环境科学 生物系统 化学 有机化学 生物 程序设计语言
作者
John Grasso,Jing Zhao,Brian G. Willis
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:32 (02n04) 被引量:1
标识
DOI:10.1142/s0129156423500052
摘要

Volatile organic compounds (VOCs) are ubiquitous in the surroundings, originating from both industrial and natural sources. VOCs directly impact the quality of both indoor and outdoor air and play a significant role in processes such as fruit ripening and the body’s metabolism. VOC monitoring has seen significant growth recently, with an emphasis on developing low-cost, portable sensors capable of both vapor discrimination and concentration measurements. VOC sensing remains challenging, mainly because these compounds are nonreactive, appear in low concentrations and share similar chemical structures that results in poor sensor selectivity. Therefore, individual gas sensors struggle to selectively detect target VOCs in the presence of interferences. Electronic noses overcome these limitations by employing machine learning for pattern recognition from arrays of gas sensors. Here, an electronic nose fabricated with four types of functionalized gold nanoparticles demonstrates rapid detection and quantification of eight types of VOCs at four concentration levels. A robust two-step machine learning pipeline is implemented for classification followed by regression analysis for concentration prediction. Random Forest and support vector machine classifiers show excellent results of 100% accuracy for VOC discrimination, independent of measured concentration levels. Each Random Forest regression analysis exhibits high R 2 and low RMSE with an average of 0.999 and 0.002, respectively. These results demonstrate the ability of gold nanoparticle gas sensor arrays for rapid detection and quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
张先生发布了新的文献求助10
刚刚
刚刚
共享精神应助和谐的寄凡采纳,获得10
1秒前
2秒前
完美世界应助小梁要加油采纳,获得10
2秒前
3秒前
3秒前
野原新之助完成签到,获得积分10
3秒前
3秒前
orixero应助淡定蓝采纳,获得10
4秒前
ddaizi完成签到,获得积分10
4秒前
5秒前
YQW发布了新的文献求助50
6秒前
顾矜应助靓丽万宝路采纳,获得10
6秒前
Ly完成签到 ,获得积分10
6秒前
努力加油干的小猫咪完成签到,获得积分10
7秒前
Ars完成签到,获得积分10
7秒前
打打应助碎碎念采纳,获得10
7秒前
7秒前
悠咪发布了新的文献求助10
7秒前
zjcbk985发布了新的文献求助10
9秒前
9秒前
小小发布了新的文献求助10
9秒前
ZZH发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
上官若男应助zhonghbush采纳,获得10
11秒前
ddaizi发布了新的文献求助10
12秒前
Ava应助即将高产sci采纳,获得10
12秒前
12秒前
13秒前
Zlinco发布了新的文献求助10
13秒前
十一发布了新的文献求助10
13秒前
14秒前
ljq完成签到,获得积分0
14秒前
haonanchen完成签到,获得积分10
14秒前
yarkye完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218