Utilizing Machine Learning for Rapid Discrimination and Quantification of Volatile Organic Compounds in an Electronic Nose Sensor Array

电子鼻 随机森林 支持向量机 传感器阵列 人工智能 管道(软件) 挥发性有机化合物 机器学习 模式识别(心理学) 计算机科学 环境科学 生物系统 化学 生物 有机化学 程序设计语言
作者
John Grasso,Jing Zhao,Brian G. Willis
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:32 (02n04) 被引量:1
标识
DOI:10.1142/s0129156423500052
摘要

Volatile organic compounds (VOCs) are ubiquitous in the surroundings, originating from both industrial and natural sources. VOCs directly impact the quality of both indoor and outdoor air and play a significant role in processes such as fruit ripening and the body’s metabolism. VOC monitoring has seen significant growth recently, with an emphasis on developing low-cost, portable sensors capable of both vapor discrimination and concentration measurements. VOC sensing remains challenging, mainly because these compounds are nonreactive, appear in low concentrations and share similar chemical structures that results in poor sensor selectivity. Therefore, individual gas sensors struggle to selectively detect target VOCs in the presence of interferences. Electronic noses overcome these limitations by employing machine learning for pattern recognition from arrays of gas sensors. Here, an electronic nose fabricated with four types of functionalized gold nanoparticles demonstrates rapid detection and quantification of eight types of VOCs at four concentration levels. A robust two-step machine learning pipeline is implemented for classification followed by regression analysis for concentration prediction. Random Forest and support vector machine classifiers show excellent results of 100% accuracy for VOC discrimination, independent of measured concentration levels. Each Random Forest regression analysis exhibits high R 2 and low RMSE with an average of 0.999 and 0.002, respectively. These results demonstrate the ability of gold nanoparticle gas sensor arrays for rapid detection and quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉志泽发布了新的文献求助30
刚刚
1秒前
神勇初瑶发布了新的文献求助20
1秒前
1秒前
2秒前
3秒前
杜杜发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助66666666采纳,获得10
3秒前
wonwoo完成签到,获得积分10
3秒前
5秒前
墨菲完成签到,获得积分10
6秒前
Ice_zhao发布了新的文献求助10
6秒前
ATBG55发布了新的文献求助10
6秒前
背后思卉应助zz采纳,获得10
7秒前
Rainbow完成签到,获得积分10
7秒前
水寒完成签到,获得积分10
7秒前
邓佳鑫Alan应助hululaoqi采纳,获得10
8秒前
ll发布了新的文献求助10
8秒前
9秒前
哈哈哈发布了新的文献求助10
10秒前
汪筱喵完成签到,获得积分10
10秒前
迷你的夏菡完成签到 ,获得积分10
10秒前
科研通AI6应助2315235采纳,获得10
10秒前
冬冬天赖完成签到,获得积分10
11秒前
11秒前
共享精神应助就好采纳,获得10
11秒前
麦辣基米堡完成签到,获得积分20
11秒前
12秒前
12秒前
13秒前
虚幻百川应助ty采纳,获得10
13秒前
1455关注了科研通微信公众号
13秒前
Sophia关注了科研通微信公众号
14秒前
jklwss完成签到,获得积分10
14秒前
MM完成签到,获得积分10
14秒前
Akim应助辣辣采纳,获得10
14秒前
momo完成签到,获得积分10
14秒前
pluto应助Yan采纳,获得10
15秒前
2150号发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593036
求助须知:如何正确求助?哪些是违规求助? 4679006
关于积分的说明 14807850
捐赠科研通 4643131
什么是DOI,文献DOI怎么找? 2534298
邀请新用户注册赠送积分活动 1502330
关于科研通互助平台的介绍 1469293