Utilizing Machine Learning for Rapid Discrimination and Quantification of Volatile Organic Compounds in an Electronic Nose Sensor Array

电子鼻 随机森林 支持向量机 传感器阵列 人工智能 管道(软件) 挥发性有机化合物 机器学习 模式识别(心理学) 计算机科学 环境科学 生物系统 化学 生物 有机化学 程序设计语言
作者
John Grasso,Jing Zhao,Brian G. Willis
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:32 (02n04) 被引量:1
标识
DOI:10.1142/s0129156423500052
摘要

Volatile organic compounds (VOCs) are ubiquitous in the surroundings, originating from both industrial and natural sources. VOCs directly impact the quality of both indoor and outdoor air and play a significant role in processes such as fruit ripening and the body’s metabolism. VOC monitoring has seen significant growth recently, with an emphasis on developing low-cost, portable sensors capable of both vapor discrimination and concentration measurements. VOC sensing remains challenging, mainly because these compounds are nonreactive, appear in low concentrations and share similar chemical structures that results in poor sensor selectivity. Therefore, individual gas sensors struggle to selectively detect target VOCs in the presence of interferences. Electronic noses overcome these limitations by employing machine learning for pattern recognition from arrays of gas sensors. Here, an electronic nose fabricated with four types of functionalized gold nanoparticles demonstrates rapid detection and quantification of eight types of VOCs at four concentration levels. A robust two-step machine learning pipeline is implemented for classification followed by regression analysis for concentration prediction. Random Forest and support vector machine classifiers show excellent results of 100% accuracy for VOC discrimination, independent of measured concentration levels. Each Random Forest regression analysis exhibits high R 2 and low RMSE with an average of 0.999 and 0.002, respectively. These results demonstrate the ability of gold nanoparticle gas sensor arrays for rapid detection and quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高小兔子完成签到,获得积分10
1秒前
summy完成签到,获得积分10
1秒前
mm完成签到,获得积分10
1秒前
2秒前
2秒前
Candy完成签到,获得积分10
2秒前
等待完成签到,获得积分10
3秒前
Regina完成签到,获得积分10
3秒前
3秒前
苏silence发布了新的文献求助10
3秒前
3秒前
忧伤的绍辉完成签到 ,获得积分10
3秒前
3秒前
DD完成签到,获得积分10
4秒前
HarbinDing完成签到,获得积分10
4秒前
salttttt完成签到,获得积分10
4秒前
4秒前
5秒前
生动高丽发布了新的文献求助20
5秒前
5秒前
5秒前
好好学习完成签到,获得积分0
5秒前
所所应助徐徐采纳,获得10
5秒前
6秒前
FKVB_完成签到 ,获得积分10
6秒前
缓慢若菱完成签到,获得积分10
6秒前
单纯芹菜完成签到,获得积分10
6秒前
冷静山河完成签到,获得积分10
6秒前
Burke完成签到 ,获得积分10
7秒前
kaikai完成签到,获得积分10
7秒前
7秒前
cchi完成签到,获得积分10
7秒前
吴灵完成签到,获得积分10
8秒前
9秒前
季文婷发布了新的文献求助10
9秒前
mengxiangrui发布了新的文献求助10
9秒前
斯文败类应助xhj采纳,获得10
9秒前
巴哒完成签到,获得积分10
10秒前
10秒前
撖堡包完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997