亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilizing Machine Learning for Rapid Discrimination and Quantification of Volatile Organic Compounds in an Electronic Nose Sensor Array

电子鼻 随机森林 支持向量机 传感器阵列 人工智能 管道(软件) 挥发性有机化合物 机器学习 模式识别(心理学) 计算机科学 环境科学 生物系统 化学 生物 有机化学 程序设计语言
作者
John Grasso,Jing Zhao,Brian G. Willis
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:32 (02n04) 被引量:1
标识
DOI:10.1142/s0129156423500052
摘要

Volatile organic compounds (VOCs) are ubiquitous in the surroundings, originating from both industrial and natural sources. VOCs directly impact the quality of both indoor and outdoor air and play a significant role in processes such as fruit ripening and the body’s metabolism. VOC monitoring has seen significant growth recently, with an emphasis on developing low-cost, portable sensors capable of both vapor discrimination and concentration measurements. VOC sensing remains challenging, mainly because these compounds are nonreactive, appear in low concentrations and share similar chemical structures that results in poor sensor selectivity. Therefore, individual gas sensors struggle to selectively detect target VOCs in the presence of interferences. Electronic noses overcome these limitations by employing machine learning for pattern recognition from arrays of gas sensors. Here, an electronic nose fabricated with four types of functionalized gold nanoparticles demonstrates rapid detection and quantification of eight types of VOCs at four concentration levels. A robust two-step machine learning pipeline is implemented for classification followed by regression analysis for concentration prediction. Random Forest and support vector machine classifiers show excellent results of 100% accuracy for VOC discrimination, independent of measured concentration levels. Each Random Forest regression analysis exhibits high R 2 and low RMSE with an average of 0.999 and 0.002, respectively. These results demonstrate the ability of gold nanoparticle gas sensor arrays for rapid detection and quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助甜美山灵采纳,获得10
9秒前
35秒前
Gloria发布了新的文献求助10
38秒前
情怀应助白华苍松采纳,获得10
1分钟前
orixero应助Gloria采纳,获得10
1分钟前
1分钟前
XxxxxxENT发布了新的文献求助10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
XxxxxxENT完成签到,获得积分10
1分钟前
1分钟前
Lin完成签到 ,获得积分10
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
优娜完成签到 ,获得积分10
2分钟前
桉豆完成签到 ,获得积分10
2分钟前
2分钟前
甜美山灵发布了新的文献求助10
2分钟前
2分钟前
2分钟前
儒雅珊珊发布了新的文献求助10
3分钟前
拾玖发布了新的文献求助10
3分钟前
3分钟前
3分钟前
skxxxxxx发布了新的文献求助10
3分钟前
3分钟前
jerry完成签到,获得积分10
3分钟前
甜美山灵完成签到 ,获得积分10
3分钟前
3分钟前
桐桐应助儒雅珊珊采纳,获得10
3分钟前
4分钟前
4分钟前
fabricio10发布了新的文献求助10
4分钟前
拾玖完成签到 ,获得积分10
4分钟前
4分钟前
华仔应助skxxxxxx采纳,获得10
5分钟前
科研通AI2S应助不安的靖柔采纳,获得10
5分钟前
Bunny完成签到 ,获得积分10
5分钟前
无花果应助miles采纳,获得10
5分钟前
狒狒发布了新的文献求助10
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
不安的靖柔完成签到,获得积分10
5分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584659
求助须知:如何正确求助?哪些是违规求助? 4668590
关于积分的说明 14771485
捐赠科研通 4612654
什么是DOI,文献DOI怎么找? 2530121
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499