Utilizing Machine Learning for Rapid Discrimination and Quantification of Volatile Organic Compounds in an Electronic Nose Sensor Array

电子鼻 随机森林 支持向量机 传感器阵列 人工智能 管道(软件) 挥发性有机化合物 机器学习 模式识别(心理学) 计算机科学 环境科学 生物系统 化学 有机化学 生物 程序设计语言
作者
John Grasso,Jing Zhao,Brian G. Willis
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
卷期号:32 (02n04) 被引量:1
标识
DOI:10.1142/s0129156423500052
摘要

Volatile organic compounds (VOCs) are ubiquitous in the surroundings, originating from both industrial and natural sources. VOCs directly impact the quality of both indoor and outdoor air and play a significant role in processes such as fruit ripening and the body’s metabolism. VOC monitoring has seen significant growth recently, with an emphasis on developing low-cost, portable sensors capable of both vapor discrimination and concentration measurements. VOC sensing remains challenging, mainly because these compounds are nonreactive, appear in low concentrations and share similar chemical structures that results in poor sensor selectivity. Therefore, individual gas sensors struggle to selectively detect target VOCs in the presence of interferences. Electronic noses overcome these limitations by employing machine learning for pattern recognition from arrays of gas sensors. Here, an electronic nose fabricated with four types of functionalized gold nanoparticles demonstrates rapid detection and quantification of eight types of VOCs at four concentration levels. A robust two-step machine learning pipeline is implemented for classification followed by regression analysis for concentration prediction. Random Forest and support vector machine classifiers show excellent results of 100% accuracy for VOC discrimination, independent of measured concentration levels. Each Random Forest regression analysis exhibits high R 2 and low RMSE with an average of 0.999 and 0.002, respectively. These results demonstrate the ability of gold nanoparticle gas sensor arrays for rapid detection and quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyx发布了新的文献求助10
2秒前
乐乐应助6666采纳,获得10
4秒前
思源应助研友_8DAv0L采纳,获得10
5秒前
顺利的觅云完成签到,获得积分10
5秒前
5秒前
11111完成签到,获得积分20
6秒前
tingting372给tingting372的求助进行了留言
8秒前
8秒前
yx_cheng应助ygx采纳,获得10
10秒前
晨青发布了新的文献求助10
10秒前
jerry完成签到,获得积分10
11秒前
研友_8DAv0L完成签到,获得积分20
11秒前
李雨珍应助雪山飞龙采纳,获得10
12秒前
zhengxy2002关注了科研通微信公众号
12秒前
16秒前
善学以致用应助圆你心安采纳,获得10
16秒前
黄黄完成签到,获得积分0
17秒前
瑩1223完成签到 ,获得积分20
19秒前
晨青完成签到,获得积分10
21秒前
23秒前
谈笑间完成签到,获得积分10
24秒前
cc完成签到,获得积分20
26秒前
一轮太阳和幻想完成签到,获得积分10
26秒前
犹豫的夏旋完成签到 ,获得积分10
28秒前
28秒前
脑洞疼应助Eternitymaria采纳,获得10
29秒前
29秒前
qq发布了新的文献求助10
31秒前
31秒前
oboy完成签到,获得积分10
33秒前
Hello应助Elaine采纳,获得10
33秒前
香蕉觅云应助shinn采纳,获得10
33秒前
6666发布了新的文献求助10
34秒前
西西弗完成签到 ,获得积分10
34秒前
欣喜的香彤完成签到,获得积分10
36秒前
li发布了新的文献求助10
36秒前
41秒前
黄玉珠发布了新的文献求助10
42秒前
43秒前
Eternitymaria发布了新的文献求助10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498