神经科学
5-羟色胺能
神经可塑性
神经发生
突触可塑性
谷氨酸的
神经营养因子
神经退行性变
心理学
疾病
谷氨酸受体
生物
医学
受体
病理
生物化学
血清素
作者
Michael Winkelman,Attila Szabó,Ede Frecska
标识
DOI:10.1016/j.euroneuro.2023.07.003
摘要
Alzheimer's Disease (AD) is a currently incurable but increasingly prevalent fatal and progressive neurodegenerative disease, demanding consideration of therapeutically relevant natural products and their synthetic analogues. This paper reviews evidence for effectiveness of natural and synthetic psychedelics in the treatment of AD causes and symptoms. The plastogenic effects of serotonergic psychedelics illustrate that they have efficacy for addressing multiple facets of AD pathology. We review findings illustrating neuroplasticity mechanisms of classic (serotonergic) and non-classic psychedelics that indicate their potential as treatments for AD and related dementias. Classic psychedelics modulate glutamatergic neurotransmission and stimulate synaptic and network remodeling that facilitates synaptic, structural and behavioral plasticity. Up-regulation of neurotrophic factors enable psychedelics to promote neuronal survival and glutamate-driven neuroplasticity. Muscimol modulation of GABAAR reduces Aβ-induced neurotoxicity and psychedelic Sig-1R agonists provide protective roles in Aβ toxicity. Classic psychedelics also activate mTOR intracellular effector pathways in brain regions that show atrophy in AD. The potential of psychedelics to treat AD involves their ability to induce structural and functional neural plasticity in brain circuits and slow or reverse brain atrophy. Psychedelics stimulate neurotrophic pathways, increase neurogenesis and produce long-lasting neural changes through rewiring pathological neurocircuitry. Psychedelic effects on 5-HT receptor target genes and induction of synaptic, structural, and functional changes in neurons and networks enable them to promote and enhance brain functional connectivity and address diverse mechanisms underlying degenerative neurological disorders. These findings provide a rationale for immediate investigation of psychedelics as treatments for AD patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI