Consensus cluster structure guided multi-view unsupervised feature selection

计算机科学 特征选择 判别式 人工智能 聚类分析 机器学习 特征(语言学) 特征学习 选择(遗传算法) 图形 数据挖掘 无监督学习 模式识别(心理学) 理论计算机科学 哲学 语言学
作者
Zhiwen Cao,Xijiong Xie,Feixiang Sun,Jiabei Qian
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:271: 110578-110578 被引量:1
标识
DOI:10.1016/j.knosys.2023.110578
摘要

As the volume of high-dimensional multi-view data continues to grow, there has been a significant development in multi-view unsupervised feature selection methods, particularly those that perform graph learning and feature selection simultaneously. These methods typically begin by constructing a consensus graph, which is then utilized to ensure that the projected samples maintain the local structure of data. However, these methods require data from multiple views to preserve the same manifold structure, which goes against the reality that similarities may vary across different views. On the other hand, despite inconsistencies between heterogeneous features, multiple views share a unique cluster structure. Inspired by this, we propose consensus cluster structure guided multi-view unsupervised feature selection (CCSFS). Specifically, we generate multiple cluster structures and fuse them into a consensus structure to guide feature selection. The proposed method unifies subspace learning, cluster analysis, consensus learning and sparse feature selection into one optimization framework. By leveraging the inherent interactions between these four subtasks, CCSFS can finally select informative and discriminative features. An efficient algorithm is carefully designed to solve the optimization problem of the objective function. We conduct extensive clustering experiments on seven multi-view datasets to demonstrate that the proposed method outperforms some of the latest competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助论文侠采纳,获得10
刚刚
1秒前
郭小宝发布了新的文献求助10
3秒前
丘比特应助letter采纳,获得10
3秒前
3秒前
5秒前
坚强枫发布了新的文献求助10
7秒前
7秒前
陶醉延恶发布了新的文献求助10
7秒前
寄语明月完成签到,获得积分10
7秒前
CipherSage应助ZWGS采纳,获得30
9秒前
10秒前
11秒前
张雷应助Quinna采纳,获得20
11秒前
12秒前
Cloud发布了新的文献求助10
12秒前
12秒前
传奇3应助小胖采纳,获得10
13秒前
陶醉延恶完成签到,获得积分20
15秒前
budingman发布了新的文献求助20
16秒前
Peng应助毛豆爸爸采纳,获得10
17秒前
letter发布了新的文献求助10
18秒前
zwy109发布了新的文献求助10
18秒前
18秒前
细辛发布了新的文献求助10
18秒前
19秒前
小刺猬发布了新的文献求助10
21秒前
24秒前
25秒前
小小应助文件撤销了驳回
25秒前
小胖完成签到,获得积分10
25秒前
李健应助22222采纳,获得10
25秒前
脑洞疼应助陶醉延恶采纳,获得10
26秒前
鳗鱼思真完成签到,获得积分20
26秒前
小胖发布了新的文献求助10
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
jiang完成签到,获得积分10
30秒前
30秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068