DADR-HCD: A deep domain adaptation and disentangled representation network for unsupervised heterogeneous change detection

计算机科学 变更检测 代表(政治) 域适应 人工智能 适应(眼睛) 模式识别(心理学) 神经科学 政治 政治学 分类器(UML) 法学 生物
作者
Anjin Dai,Jianyu Yang,T. Zhang,Bingbo Gao,Kaixuan Tang,Xinyue Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3403727
摘要

Change detection, a critical and flourishing Earth observation technology, aims to identify changes through cross-temporal remote sensing images acquired over the same geographical area. With the widespread use in various change scenarios, it becomes essential to utilize heterogeneous images due to the high challenge of accessing the ideal homogeneous images. Nevertheless, domain shift, generated by different imaging factors (e.g., sensors, seasons, atmosphere, illumination), makes it unable to compare the heterogeneous images directly. To address this problem, we propose a deep domain adaptation and disentangled representation network for unsupervised heterogeneous change detection (DADR-HCD), which bridges the domain gap from the perspective of causal mechanisms and compares the differences in the content feature space. In the training stage, the deep features of the input bitemporal images are further disentangled into the domain-invariant (content) features and domain-specific (style) features through an explicit image translation network. Furthermore, unlike comparing the differences at the image level or deep feature space, the change probability maps are directly calculated based on the content feature similarity in the prediction stage, which minimizes the style noise and avoids the asymmetry of image-level translation. Finally, the binary change maps are obtained using threshold segmentation and morphological post-processing strategies. The comprehensive experimental results and detailed analysis on five typical datasets demonstrate the effectiveness and superiority of the proposed DADR-HCD network in the unsupervised heterogeneous change detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助胡须采纳,获得10
3秒前
3秒前
善学以致用应助Zed采纳,获得10
4秒前
研友_ngJQzL发布了新的文献求助10
4秒前
4秒前
哭泣老三完成签到 ,获得积分20
4秒前
研猫发布了新的文献求助10
6秒前
9秒前
9秒前
美好寒梦完成签到,获得积分10
10秒前
龙龙完成签到 ,获得积分10
12秒前
ding应助Menand采纳,获得10
12秒前
13秒前
13秒前
14秒前
笑点低煎饼完成签到,获得积分10
14秒前
顾矜应助单薄的抽屉采纳,获得10
14秒前
15秒前
小柯基学从零学起完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
18秒前
19秒前
Sukas发布了新的文献求助10
19秒前
19秒前
斯文败类应助研友_ngJQzL采纳,获得10
19秒前
19秒前
19秒前
NWAFUZH发布了新的文献求助10
19秒前
20秒前
21秒前
autumn发布了新的文献求助10
22秒前
stand发布了新的文献求助10
22秒前
田様应助kkkkkkk_采纳,获得10
24秒前
24秒前
熊二浪发布了新的文献求助10
24秒前
25秒前
研猫发布了新的文献求助10
25秒前
调研昵称发布了新的文献求助10
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128773
求助须知:如何正确求助?哪些是违规求助? 2779532
关于积分的说明 7743900
捐赠科研通 2434858
什么是DOI,文献DOI怎么找? 1293670
科研通“疑难数据库(出版商)”最低求助积分说明 623407
版权声明 600514