Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier]
卷期号:83: 103715-103715 被引量:17
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜神月发布了新的文献求助30
1秒前
dd完成签到,获得积分10
1秒前
mm完成签到,获得积分10
1秒前
小杜发布了新的文献求助10
1秒前
ocean完成签到,获得积分10
2秒前
2秒前
赘婿应助飞飞采纳,获得10
2秒前
张三毛完成签到,获得积分10
3秒前
还好发布了新的文献求助10
3秒前
怕孤单的石头完成签到,获得积分10
3秒前
mumuaidafu完成签到 ,获得积分10
3秒前
dd发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
赖氨酸完成签到,获得积分10
7秒前
7秒前
科研通AI6应助dd采纳,获得10
7秒前
传奇3应助韩韩采纳,获得10
8秒前
orixero应助ame1120采纳,获得10
8秒前
文件夹完成签到,获得积分10
8秒前
CipherSage应助动听皮皮虾采纳,获得50
8秒前
9秒前
YYJJHH发布了新的文献求助10
9秒前
张晓洁完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
凌康发布了新的文献求助10
10秒前
10秒前
shuibuzhao完成签到 ,获得积分10
11秒前
11秒前
今后应助suiqing采纳,获得10
11秒前
伟大人物发布了新的文献求助10
11秒前
田様应助JAY采纳,获得10
11秒前
朱金雨完成签到 ,获得积分10
12秒前
刘宇翔完成签到,获得积分10
12秒前
ABAB完成签到,获得积分10
12秒前
13秒前
icecream完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400370
求助须知:如何正确求助?哪些是违规求助? 4519664
关于积分的说明 14076262
捐赠科研通 4432553
什么是DOI,文献DOI怎么找? 2433708
邀请新用户注册赠送积分活动 1425910
关于科研通互助平台的介绍 1404615