Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier BV]
卷期号:83: 103715-103715 被引量:8
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CLK完成签到,获得积分10
刚刚
kdtaaaa完成签到,获得积分20
2秒前
3秒前
lu完成签到,获得积分10
5秒前
wycwkxjjya完成签到 ,获得积分10
6秒前
7秒前
7秒前
曾云璐发布了新的文献求助10
9秒前
Orange应助等待的谷波采纳,获得10
10秒前
11秒前
esyncoms发布了新的文献求助10
11秒前
zg发布了新的文献求助10
12秒前
UAU发布了新的文献求助10
12秒前
sha303270发布了新的文献求助10
17秒前
小二郎应助唧唧采纳,获得10
17秒前
17秒前
17秒前
18秒前
19秒前
梁三岁完成签到,获得积分10
21秒前
年轻的冰海完成签到,获得积分10
21秒前
TIMF14完成签到,获得积分10
22秒前
24秒前
清脆南蕾发布了新的文献求助10
24秒前
25秒前
27秒前
情怀应助bias采纳,获得10
29秒前
唧唧发布了新的文献求助10
29秒前
颜苏完成签到,获得积分10
30秒前
hm完成签到,获得积分10
30秒前
文艺夏青完成签到,获得积分10
32秒前
32秒前
34秒前
111咩咩完成签到,获得积分10
36秒前
36秒前
gnufgg完成签到,获得积分10
38秒前
文艺夏青发布了新的文献求助10
39秒前
Irene完成签到 ,获得积分10
39秒前
SC关闭了SC文献求助
40秒前
丘比特应助zg采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495