Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier]
卷期号:83: 103715-103715 被引量:3
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助50
刚刚
zaohesu完成签到,获得积分10
1秒前
2秒前
苹果应助xtutang采纳,获得10
2秒前
2秒前
qqz发布了新的文献求助10
3秒前
3秒前
zai发布了新的文献求助10
3秒前
CipherSage应助dahuihui采纳,获得10
3秒前
3秒前
横A完成签到,获得积分10
4秒前
a龙发布了新的文献求助10
4秒前
llyy完成签到,获得积分10
4秒前
wwww完成签到,获得积分10
4秒前
Singularity应助lucyu2668采纳,获得20
5秒前
5秒前
6秒前
yidong应助酷炫雅青采纳,获得10
7秒前
研友_VZG7GZ应助RYAN采纳,获得10
7秒前
7秒前
8秒前
qhy完成签到,获得积分10
8秒前
zhanghan完成签到,获得积分10
8秒前
暮霭沉沉应助mbf采纳,获得10
9秒前
9秒前
9秒前
贪玩蔡徐坤完成签到 ,获得积分10
10秒前
10秒前
wwww发布了新的文献求助10
10秒前
横A发布了新的文献求助10
10秒前
10秒前
q792309106完成签到,获得积分10
11秒前
123123发布了新的文献求助10
11秒前
11秒前
淡淡的可仁完成签到,获得积分20
12秒前
勤劳思卉完成签到,获得积分20
12秒前
NeuroWhite完成签到,获得积分10
12秒前
科研小白发布了新的文献求助10
13秒前
llyy发布了新的文献求助30
13秒前
科研顺利发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788