Prediction model of pressure injury occurrence in diabetic patients during ICU hospitalization——XGBoost machine learning model can be interpreted based on SHAP

接收机工作特性 机械通风 糖尿病 机器学习 曲线下面积 医学 人工智能 重症监护医学 急诊医学 计算机科学 内科学 内分泌学
作者
Jie Xu,Tie Chen,Xixi Fang,Limin Xia,Xiaoyun Pan
出处
期刊:Intensive and Critical Care Nursing [Elsevier BV]
卷期号:83: 103715-103715 被引量:6
标识
DOI:10.1016/j.iccn.2024.103715
摘要

The occurrence of pressure injury in patients with diabetes during ICU hospitalization can result in severe complications, including infections and non-healing wounds. The aim of this study was to predict the occurrence of pressure injury in ICU patients with diabetes using machine learning models. In this study, LASSO regression was used for feature screening, XGBoost was employed for machine learning model construction, ROC curve analysis, calibration curve analysis, clinical decision curve analysis, sensitivity, specificity, accuracy, and F1 score were used for evaluating the model's performance. Out of the 503 ICU patients with diabetes included in the study, pressure injury developed in 170 cases, resulting in an incidence rate of 33.8 %. The XGBoost model had a higher AUC for predicting pressure injury in patients with diabetes during ICU hospitalization (train: 0.896, 95 %CI: 0.863 to 0.929; test: 0.835, 95 % CI: 0.761–0.908). The importance of SHAP variables in the model from high to low was: 'Days in ICU', 'Mechanical Ventilation', 'Neutrophil Count', 'Consciousness', 'Glucose', and 'Warming Blanket'. The XGBoost machine learning model we constructed has shown high performance in predicting the occurrence of pressure injury in ICU patients with diabetes. Additionally, the SHAP method enables the interpretation of the results provided by the machine learning model. Improve the ability to predict the early occurrence of pressure injury in diabetic patients in the ICU. This will enable clinicians to intervene early and reduce the occurrence of complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hai完成签到,获得积分10
刚刚
嗒嗒完成签到,获得积分10
刚刚
兮柚完成签到 ,获得积分20
刚刚
丑123完成签到 ,获得积分10
1秒前
c c完成签到,获得积分10
1秒前
Zaaa完成签到 ,获得积分20
2秒前
yunjian1583完成签到,获得积分10
2秒前
2秒前
lzj完成签到,获得积分20
3秒前
顺心凡灵完成签到,获得积分10
3秒前
爆米花应助小韩采纳,获得10
3秒前
和谐诗双完成签到 ,获得积分10
4秒前
4秒前
高挑的寒松完成签到 ,获得积分10
5秒前
子墨兮扬完成签到 ,获得积分10
6秒前
6秒前
JF123_完成签到 ,获得积分10
7秒前
机械民工完成签到 ,获得积分10
8秒前
shenghaowen发布了新的文献求助10
8秒前
林海雨完成签到,获得积分10
9秒前
胖子东发布了新的文献求助10
9秒前
任性的梦菲完成签到,获得积分10
9秒前
10秒前
江小苔发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
情怀应助shenghaowen采纳,获得10
15秒前
renhu发布了新的文献求助10
16秒前
xiaoxiao发布了新的文献求助10
17秒前
17秒前
Tammy发布了新的文献求助10
17秒前
18秒前
fffff发布了新的文献求助20
20秒前
cjjwei完成签到 ,获得积分10
20秒前
oyc发布了新的文献求助10
22秒前
mo72090完成签到,获得积分10
24秒前
Jasper应助牛肉汉堡采纳,获得10
24秒前
乐乐发布了新的文献求助10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701298
求助须知:如何正确求助?哪些是违规求助? 3251633
关于积分的说明 9875391
捐赠科研通 2963587
什么是DOI,文献DOI怎么找? 1625189
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742593