Highly Accurate and Explainable Predictions of Small-Molecule Antioxidants for Eight In Vitro Assays Simultaneously through an Alternating Multitask Learning Strategy

可解释性 小分子 抗氧化剂 机器学习 计算机科学 人工智能 抗氧化能力 多任务学习 化学 生物系统 计算生物学 生物化学 生物 任务(项目管理) 管理 经济
作者
Duancheng Zhao,Yanhong Zhang,Yihao Chen,Biaoshun Li,Wenguang Zhou,Ling Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c00748
摘要

Small molecule antioxidants can inhibit or retard oxidation reactions and protect against free radical damage to cells, thus playing a key role in food, cosmetics, pharmaceuticals, the environment, as well as materials. Experimentally driven antioxidant discovery is a major paradigm, and computationally assisted antioxidants are rarely reported. In this study, a functional-group-based alternating multitask self-supervised molecular representation learning method is proposed to simultaneously predict the antioxidant activities of small molecules for eight commonly used in vitro antioxidant assays. Extensive evaluation results reveal that compared with the baseline models, the multitask FG-BERT model achieves the best overall predictive performance, with the highest average F1, BA, ROC-AUC, and PRC-AUC values of 0.860, 0.880, 0.954, and 0.937 for the test sets, respectively. The Y-scrambling testing results further demonstrate that such a deep learning model was not constructed by accident and that it has reliable predictive capabilities. Additionally, the excellent interpretability of the multitask FG-BERT model makes it easy to identify key structural fragments/groups that contribute significantly to the antioxidant effect of a given molecule. Finally, an online antioxidant activity prediction platform called AOP (freely available at https://aop.idruglab.cn/) and its local version were developed based on the high-quality multitask FG-BERT model for experts and nonexperts in the field. We anticipate that it will contribute to the discovery of novel small-molecule antioxidants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Esfuerzo完成签到,获得积分10
1秒前
3秒前
slb1319发布了新的文献求助10
5秒前
twk完成签到,获得积分10
5秒前
6秒前
6秒前
情怀应助kkai采纳,获得30
8秒前
田様应助奶昔采纳,获得10
8秒前
9秒前
ecoli完成签到,获得积分10
9秒前
科研通AI2S应助标致冰海采纳,获得10
10秒前
丘比特应助Solar energy采纳,获得10
10秒前
狗哥发布了新的文献求助30
11秒前
keyanniniz发布了新的文献求助10
11秒前
李哈哈发布了新的文献求助10
12秒前
13秒前
ymx发布了新的文献求助10
13秒前
14秒前
悅悅完成签到,获得积分10
14秒前
16秒前
辛勤的掏粪工完成签到,获得积分10
17秒前
lalala完成签到,获得积分10
18秒前
哈哈哈哈完成签到,获得积分10
19秒前
小鸭包发布了新的文献求助10
20秒前
梧wu完成签到,获得积分10
21秒前
21秒前
keyanniniz完成签到,获得积分10
21秒前
Hello应助儿童肉松采纳,获得10
22秒前
田様应助感动的老四采纳,获得10
23秒前
杨咩咩完成签到,获得积分10
24秒前
25秒前
科研通AI2S应助pangmengxuan采纳,获得10
25秒前
25秒前
lpy发布了新的文献求助10
26秒前
26秒前
英俊的铭应助蟹老板采纳,获得10
26秒前
Wsq发布了新的文献求助10
26秒前
大模型应助沉静的万天采纳,获得10
26秒前
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076666
求助须知:如何正确求助?哪些是违规求助? 2729656
关于积分的说明 7509300
捐赠科研通 2377842
什么是DOI,文献DOI怎么找? 1260874
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203