亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing smart grid performance: A stochastic approach to renewable energy integration

可再生能源 网格 智能电网 计算机科学 环境科学 工程类 电气工程 数学 几何学
作者
Zhilong Zhao,Nick Holland,Jack Nelson
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:111: 105533-105533
标识
DOI:10.1016/j.scs.2024.105533
摘要

Smart grids offer numerous possibilities for developing and executing sustainable and efficient electricity supply chains that exhibit increased resilience to disturbances. The exploration of the Electric Supply Chain Network (ESCND) design problem using smart grids has been limited. This article aims to tackle this challenge through the application of a robust multi-objective optimization approach, encompassing three economic goals (maximizing profit), environmental goals (minimizing greenhouse gas emissions), and resilience goals (maximizing network resilience). Additionally, the optimization process takes into account the dual objectives of maximizing efficiency and minimizing energy loss by incorporating relevant cost considerations. The proposed methodology incorporates distinctive features of smart grids, such as demandside management programs, microgrid structures, bidirectional distribution lines, and consumer-supplier nodes. It addresses various interconnected decisions, including location placement, capacity expansion, load allocation, and pricing. To solve the formulated model, a potent combination of multi-objective optimization methods based on cutting-plane algorithms and AUGMECON2 is introduced. Subsequently, the proposed model and solution approach are applied to a practical case study, and the obtained results are comprehensively examined. The findings suggest that, despite potential contradictions between economic and environmental objectives, the implementation of smart grids can concurrently improve environmental performance and network flexibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想游泳的鹰完成签到,获得积分10
7秒前
HuY完成签到 ,获得积分10
7秒前
8秒前
8秒前
zho应助大怪兽采纳,获得30
9秒前
孟筱完成签到 ,获得积分10
14秒前
14秒前
JamesPei应助James采纳,获得10
15秒前
吕绪特完成签到 ,获得积分10
16秒前
wise111发布了新的文献求助10
19秒前
21秒前
冰雪痕完成签到 ,获得积分10
22秒前
22秒前
26秒前
YifanWang应助科研通管家采纳,获得20
27秒前
YifanWang应助科研通管家采纳,获得20
28秒前
YifanWang应助科研通管家采纳,获得46
28秒前
YifanWang应助科研通管家采纳,获得20
28秒前
YifanWang应助科研通管家采纳,获得20
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
YifanWang应助科研通管家采纳,获得30
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
James发布了新的文献求助10
28秒前
木穹完成签到,获得积分10
30秒前
是小小李哇完成签到 ,获得积分10
34秒前
37秒前
James完成签到,获得积分10
38秒前
Sybsy发布了新的文献求助10
40秒前
大怪兽完成签到,获得积分10
45秒前
科研通AI5应助hahahah采纳,获得10
45秒前
养乐多敬你完成签到 ,获得积分10
51秒前
科目三应助保卫时光采纳,获得10
52秒前
Jasper应助白青采纳,获得10
54秒前
木子完成签到 ,获得积分10
58秒前
六月初八夜完成签到,获得积分10
59秒前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助北辰一刀流采纳,获得10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736596
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10019999
捐赠科研通 2997226
什么是DOI,文献DOI怎么找? 1644486
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749646