HMG-CoA还原酶
疾病
阿尔茨海默病
药理学
医学
计算生物学
生物
生物化学
酶
内科学
还原酶
作者
Anas Shamsi,Mohammad Furkan,Mohd Shahnawaz Khan,Dharmendra Kumar Yadav,Moyad Shahwan
摘要
Background: HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) plays a pivotal role as a control enzyme in ketogenesis, and its association with the amyloid-β protein precursor (AβPP) in mitochondria implicates a potential involvement in Alzheimer’s disease (AD) pathophysiology. Objective: Our study aimed at identifying repurposed drugs using the DrugBank database capable of inhibiting HMGCS2 activity. Methods: Exploiting the power of drug repurposing in conjunction with virtual screening and molecular dynamic (MD) simulations against ‘HMGCS2’, we present new in-silico insight into structure-based drug repurposing. Results: The initial molecules were screened for their binding affinity to HMGCS2. Subsequent interaction analyses and extensive 300 ns MD simulations were conducted to explore the conformational dynamics and stability of HMGCS2 in complex with the screened molecules, particularly Penfluridol and Lurasidone. Conclusions: The study revealed that HMGCS2 forms stable protein-ligand complexes with Penfluridol and Lurasidone. Our findings indicate that Penfluridol and Lurasidone competitively bind to HMGCS2 and warrant their further exploration as potential repurposed molecules for anti-Alzheimer’s drug development.
科研通智能强力驱动
Strongly Powered by AbleSci AI