Ground-Based Hyperspectral Estimation of Maize Leaf Chlorophyll Content Considering Phenological Characteristics

高光谱成像 单变量 物候学 特征选择 数学 阶段(地层学) 环境科学 计算机科学 多元统计 遥感 统计 农学 人工智能 生物 地理 古生物学
作者
Yiming Guo,Shiyu Jiang,Huiling Miao,Zhenghua Song,Junru Yu,Song Guo,Qingrui Chang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (12): 2133-2133 被引量:2
标识
DOI:10.3390/rs16122133
摘要

Accurately measuring leaf chlorophyll content (LCC) is crucial for monitoring maize growth. This study aims to rapidly and non-destructively estimate the maize LCC during four critical growth stages and investigate the ability of phenological parameters (PPs) to estimate the LCC. First, four spectra were obtained by spectral denoising followed by spectral transformation. Next, sensitive bands (Rλ), spectral indices (SIs), and PPs were extracted from all four spectra at each growth stage. Then, univariate models were constructed to determine their potential for independent LCC estimation. The multivariate regression models for the LCC (LCC-MR) were built based on SIs, SIs + Rλ, and SIs + Rλ + PPs after feature variable selection. The results indicate that our machine-learning-based LCC-MR models demonstrated high overall accuracy. Notably, 83.33% and 58.33% of these models showed improved accuracy when the Rλ and PPs were successively introduced to the SIs. Additionally, the model accuracies of the milk-ripe and tasseling stages outperformed those of the flare–opening and jointing stages under identical conditions. The optimal model was created using XGBoost, incorporating the SI, Rλ, and PP variables at the R3 stage. These findings will provide guidance and support for maize growth monitoring and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cugwzr完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
唯博完成签到 ,获得积分10
5秒前
muzi发布了新的文献求助10
6秒前
9秒前
9秒前
忧郁盼夏发布了新的文献求助10
9秒前
Xianhe完成签到,获得积分10
10秒前
HUU完成签到,获得积分10
12秒前
15秒前
忧郁盼夏完成签到,获得积分10
15秒前
15秒前
搜集达人应助su采纳,获得10
17秒前
丘比特应助gwenjing采纳,获得10
17秒前
哈哈哈完成签到,获得积分10
19秒前
19秒前
冷艳的姿发布了新的文献求助10
19秒前
dpp完成签到,获得积分10
20秒前
周周完成签到,获得积分10
22秒前
23秒前
23秒前
哈哈哈发布了新的文献求助30
23秒前
123发布了新的文献求助10
24秒前
26秒前
Stardust发布了新的文献求助10
26秒前
momo发布了新的文献求助10
27秒前
29秒前
笑笑完成签到,获得积分20
31秒前
stephenzh完成签到,获得积分10
31秒前
su发布了新的文献求助10
33秒前
笑笑发布了新的文献求助10
34秒前
李健的粉丝团团长应助momo采纳,获得10
35秒前
情怀应助LJJ采纳,获得10
37秒前
41秒前
42秒前
42秒前
44秒前
阿里巴巴大盗完成签到,获得积分10
45秒前
zying发布了新的文献求助30
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173