清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

OP0158 A NOVEL APPROACH FOR MIXED-METHODS RESEARCH USING LANGUAGE LEARNING MODELS: A REPORT USING PATIENTS’ PERSPECTIVES ON BARRIERS TO HIP AND KNEE REPLACEMENT

计算机科学 人工智能
作者
Insa Mannstadt,S. Goodman,Mangala Rajan,S.J. Young,F. Wang,I. Navarro-Millan,Bella Mehta
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:: 132-133
标识
DOI:10.1136/annrheumdis-2024-eular.5286
摘要

Background:

While qualitative research techniques provide valuable insights into patient experiences and perceptions in healthcare, analyzing textual data from interviews can be time consuming and require multiple analysts for investigator triangulation. Employing investigator triangulation in qualitative data analysis minimizes potential biases and limitations that stem from relying solely on a single source or investigator. This approach enhances the credibility and validity of the findings by corroborating information from various perspectives and investigators, thus ensuring a more comprehensive and reliable analysis. The capability of Large Language Model (LLM) technology to identify patterns and themes in textual data offers potential for conducting independent analysis. This study explored a novel approach to investigator triangulation in mixed-methods research (MMR) by employing ChatGPT-4, an LLM, for analyzing data from patient interviews.

Objectives:

The objective of this study is to evaluate the application of LLMs, specifically ChatGPT-4, in mixed-methods research. This study will specifically compare the thematic analysis of interview text and the subsequent survey generation conducted by ChatGPT-4 with that performed by human investigators. The comparison will focus on evaluating the quality of the content and assessing the time taken for these tasks. We seek to determine the potential of LLMs in enhancing mixed-method research in healthcare.

Methods:

We compared the thematic analysis and survey generation between investigators and ChatGPT-4, an AI-powered natural language processing tool that utilizes Generative Pre-trained Transformer (GPT), a type of large language model (LLM), as its core model. We used qualitative data from an existing qualitative study that explored patient perceptions of barriers to hip and knee replacement utilization. Textual data from six semi-structured interviews was analyzed by human investigators and ChatGPT-4 independently. Human investigators used NVivo software to analyze the data and generate the codes and themes that emerged from the data. Once the data analysis was completed and it was determined that thematic saturation had been achieved, we proceeded to utilize ChatGPT-4 to directly generate themes from the interview transcripts. Both the human investigators and ChatGPT-4 independently used the generated themes to construct a survey. We compared and evaluated the investigator-generated themes and survey with those generated by ChatGPT-4.

Results:

ChatGPT-4 generated analogous dominant themes and a comprehensive corresponding survey as human investigators but in significantly less time. (Table 1) Human-led thematic analysis produced 6 themes and 30 survey questions, taking significant time. ChatGPT-4 generated the same themes in under 45 minutes and created 17 survey questions in less than 1 minute. Themes generated by ChatGPT-4 covered the same topics as human-generated themes. However, ChatGPT-4's survey questions were shorter and less specific compared to human-generated questions. Figure 1 mixed-methods flowchart proposes integrating LLMs alongside human investigators as a supplementary tool for the preliminary thematic analysis of qualitative data and survey generation.

Conclusion:

The potential of ChatGPT-4 as a tool for assisting in investigator triangulation was evident in both the qualitative portion of mixed methods research (MMR) by assisting with thematic analysis, and in the quantitative portion of MMR by facilitating survey development. This integration may improve the overall workflow efficiency of MMR. Given the novelty of LLM technology and the limited research on its embedded biases, investigators must consider the ethical and qualitative implications when using LLMs for research purposes.

REFERENCES:

NIL.

Acknowledgements:

NIL.

Disclosure of Interests:

Insa Mannstadt: None declared, Susan Goodman UCB (Paid consultant), Novartis (Research support), Mangala Rajan: None declared, Sarah Young: None declared, Fei Wang: None declared, Iris Navarro-Millan Sobi (Swedish Orphan Biovitrum AB) advisory board honoraria, Bella Mehta Novartis (non labelled educational content), Janssen (advisory board).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是雪豹发布了新的文献求助10
1秒前
梓唯忧完成签到 ,获得积分10
3秒前
fred完成签到,获得积分20
13秒前
lilaccalla完成签到 ,获得积分10
17秒前
29秒前
在水一方应助我是雪豹采纳,获得10
34秒前
fred发布了新的文献求助10
36秒前
小马甲应助辛勤千筹采纳,获得10
38秒前
蒲蒲完成签到 ,获得积分10
48秒前
遗忘完成签到,获得积分10
50秒前
sobergod完成签到 ,获得积分10
58秒前
扶我起来写论文完成签到 ,获得积分10
1分钟前
小美酱完成签到 ,获得积分10
1分钟前
辛勤千筹完成签到,获得积分10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
yzhilson完成签到 ,获得积分10
1分钟前
dudu完成签到 ,获得积分10
1分钟前
hairgod完成签到,获得积分10
1分钟前
科研通AI5应助anny2022采纳,获得10
1分钟前
xixi很困完成签到 ,获得积分10
1分钟前
2分钟前
anny2022发布了新的文献求助10
2分钟前
2分钟前
研友_8D3KzZ发布了新的文献求助10
2分钟前
rofsc完成签到 ,获得积分10
2分钟前
可爱的函函应助研友_8D3KzZ采纳,获得10
2分钟前
顺利的曼寒完成签到 ,获得积分10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
MISA完成签到 ,获得积分10
2分钟前
四叶草完成签到 ,获得积分10
2分钟前
星辰大海应助xun采纳,获得10
2分钟前
gobi完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
elle发布了新的文献求助10
3分钟前
77完成签到 ,获得积分10
3分钟前
上官若男应助elle采纳,获得10
3分钟前
3分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080150
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652307
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752096