清脆的
金黄色葡萄球菌
化学
腙
计算生物学
组合化学
微生物学
生物
细菌
生物化学
立体化学
遗传学
基因
作者
Jing Wang,Yining Zhao,Lelin Qian,Ying Yu,Yuan Zhang,Juan Zhang
标识
DOI:10.1016/j.jhazmat.2024.134877
摘要
In this work, a dual recognized CRISPR/Cas12a system has been proposed, in which the activation chain is cleverly divided into two parts that can serve for precise dual target recognition, and hydrazone chemistry is introduced for the formation of a whole activation chain. It has been further explored to construct a new method for the specific and sensitive detection of Staphylococcus aureus (SA) as one of the most common pathogens in infectious diseases. In virtue of proximity effect contributed by complementary base pairing, hydrazone chemistry accelerates the formation of the whole activation strand and improves the specificity of the CRISPR/Cas12a system, serving for the accurate analysis of SA. Moreover, the temporary aggregation of CRISPR/Cas12a around SA enhances its catalytical efficiency so as to further amplify signal. With high sensitivity, stability, reproducibility and specificity, the established method has been successfully applied to detect SA in complex substrates. Meanwhile, our established method can well evaluate the inhibition effect of chlorogenic acid and congo red in comparison with flow cytometry. ENVIRONMENTAL IMPLICATION: Bacterial pathogens exist widely in the environment and seriously threaten the safety of human health. Staphylococcus aureus (SA) is the most common pathogen of human suppurative infection, which can cause local suppurative infection, pneumonia, and even systemic infections such as sepsis. In this work, a dual recognized CRISPR/Cas12a system mediated by hydrazone chemistry has been proposed. With high sensitivity and low detection limit, the established method can specifically detect SA and effectively evaluate the antibacterial effect of inhibitors. This method is expected to be further developed into a detection method in different scenarios such as environmental monitoring and clinical diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI