Optimized single-image super-resolution reconstruction: A multimodal approach based on reversible guidance and cyclical knowledge distillation

计算机科学 蒸馏 图像(数学) 人工智能 分辨率(逻辑) 超分辨率 计算机视觉 机器学习 色谱法 化学
作者
Jingke Yan,Qin Wang,Cheng Yao,ZhaoYu Su,Fan Zhang,MeiLing Zhong,Lei Liu,Bo Jin,Weihua Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108496-108496 被引量:2
标识
DOI:10.1016/j.engappai.2024.108496
摘要

This paper proposes a new approach for reconstructing high-resolution images from low-resolution inputs using Denoising Diffusion Probabilistic Models (DDPMs). Existing DDPMs, while promising, face two issues: one is detail discrepancies due to the uncertain degradation factors in low-resolution images, the other is slow sampling speeds. To address these, a multimodal approach based on reversible guidance and cyclical knowledge distillation (MRKD) is introduced. This method is based on the concept where prior and posterior probabilities can assist in comprehending and predicting future events from available data and information. In the MRKD method, text and image information are separately encoded, and novel constraints are applied on prior and posterior distributions, optimizing the detailed features of the reconstructed image. In addition, due to the uncertainty of degradation factors in low-resolution images, a 'one-to-many' mapping issue arises in single-image super-resolution tasks. In response to this, the paper redefines constraints on the posterior distribution using the log-likelihood. Specifically, the Bayesian transformation of the input and output of the observation model is employed to effectively guide the diffusion process. To boost the slow sampling speed of DDPM, a cyclical knowledge distillation strategy is proposed, allowing iterative transfer of learned parameters from a high-step DDPM to a low-step model, thereby accelerating the sampling process while preserving image quality. The experimental results demonstrate that these strategies enable the model to effectively comprehend the high-level semantics and contextual information within images. Additionally, they address challenges associated with mode collapse, the loss of high-frequency details, and the complexities of long-tail data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张洼完成签到,获得积分10
刚刚
小艾完成签到,获得积分10
刚刚
nuture发布了新的文献求助10
1秒前
豌豆苗完成签到 ,获得积分10
1秒前
PGONE完成签到,获得积分10
1秒前
浮游应助Esther采纳,获得10
1秒前
叶子完成签到,获得积分10
1秒前
2秒前
吃的完成签到,获得积分10
2秒前
社恐Forza完成签到,获得积分10
4秒前
4秒前
univ完成签到,获得积分10
5秒前
anonym11完成签到,获得积分10
5秒前
Autaro完成签到,获得积分10
5秒前
5秒前
AW发布了新的文献求助10
5秒前
金鑫水淼完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
研友_Z6k7B8发布了新的文献求助10
7秒前
fly完成签到,获得积分10
7秒前
风趣的沛珊完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
zsg11067完成签到,获得积分20
11秒前
12秒前
YU完成签到,获得积分10
12秒前
Apple发布了新的文献求助10
12秒前
称心的高丽完成签到 ,获得积分10
13秒前
舒适的初雪完成签到,获得积分10
13秒前
科研通AI6应助一杯甜酒采纳,获得10
13秒前
14秒前
123完成签到,获得积分10
14秒前
小白完成签到,获得积分10
14秒前
认真的雪完成签到,获得积分10
14秒前
茹茹完成签到 ,获得积分10
14秒前
大方小松完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664907
求助须知:如何正确求助?哪些是违规求助? 4872925
关于积分的说明 15109723
捐赠科研通 4823813
什么是DOI,文献DOI怎么找? 2582554
邀请新用户注册赠送积分活动 1536508
关于科研通互助平台的介绍 1495074