Optimized single-image super-resolution reconstruction: A multimodal approach based on reversible guidance and cyclical knowledge distillation

计算机科学 蒸馏 图像(数学) 人工智能 分辨率(逻辑) 超分辨率 计算机视觉 机器学习 色谱法 化学
作者
Jingke Yan,Qin Wang,Cheng Yao,ZhaoYu Su,Fan Zhang,MeiLing Zhong,Lei Liu,Bo Jin,Weihua Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108496-108496 被引量:2
标识
DOI:10.1016/j.engappai.2024.108496
摘要

This paper proposes a new approach for reconstructing high-resolution images from low-resolution inputs using Denoising Diffusion Probabilistic Models (DDPMs). Existing DDPMs, while promising, face two issues: one is detail discrepancies due to the uncertain degradation factors in low-resolution images, the other is slow sampling speeds. To address these, a multimodal approach based on reversible guidance and cyclical knowledge distillation (MRKD) is introduced. This method is based on the concept where prior and posterior probabilities can assist in comprehending and predicting future events from available data and information. In the MRKD method, text and image information are separately encoded, and novel constraints are applied on prior and posterior distributions, optimizing the detailed features of the reconstructed image. In addition, due to the uncertainty of degradation factors in low-resolution images, a 'one-to-many' mapping issue arises in single-image super-resolution tasks. In response to this, the paper redefines constraints on the posterior distribution using the log-likelihood. Specifically, the Bayesian transformation of the input and output of the observation model is employed to effectively guide the diffusion process. To boost the slow sampling speed of DDPM, a cyclical knowledge distillation strategy is proposed, allowing iterative transfer of learned parameters from a high-step DDPM to a low-step model, thereby accelerating the sampling process while preserving image quality. The experimental results demonstrate that these strategies enable the model to effectively comprehend the high-level semantics and contextual information within images. Additionally, they address challenges associated with mode collapse, the loss of high-frequency details, and the complexities of long-tail data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的画板完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
小李完成签到,获得积分10
3秒前
4秒前
358489228完成签到,获得积分10
4秒前
5秒前
ding应助高骏伟采纳,获得10
5秒前
6秒前
什么也难不倒我完成签到 ,获得积分10
7秒前
十七发布了新的文献求助10
7秒前
7秒前
xss发布了新的文献求助10
8秒前
9秒前
9秒前
Colossus完成签到,获得积分10
9秒前
10秒前
寇曦皓发布了新的文献求助10
12秒前
fyf完成签到,获得积分10
12秒前
12秒前
14秒前
高骏伟发布了新的文献求助10
17秒前
小二郎应助xss采纳,获得10
18秒前
19秒前
孙燕应助俭朴千琴采纳,获得10
21秒前
screct完成签到,获得积分10
21秒前
Jiro完成签到,获得积分10
22秒前
高兴白山完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
专注洋葱完成签到,获得积分10
27秒前
Wang发布了新的文献求助10
28秒前
29秒前
专注洋葱发布了新的文献求助10
31秒前
31秒前
34秒前
共享精神应助Wang采纳,获得10
35秒前
派大欣发布了新的文献求助10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662