Optimized single-image super-resolution reconstruction: A multimodal approach based on reversible guidance and cyclical knowledge distillation

计算机科学 蒸馏 图像(数学) 人工智能 分辨率(逻辑) 超分辨率 计算机视觉 机器学习 色谱法 化学
作者
Jingke Yan,Qin Wang,Cheng Yao,ZhaoYu Su,Fan Zhang,MeiLing Zhong,Lei Liu,Bo Jin,Weihua Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108496-108496 被引量:2
标识
DOI:10.1016/j.engappai.2024.108496
摘要

This paper proposes a new approach for reconstructing high-resolution images from low-resolution inputs using Denoising Diffusion Probabilistic Models (DDPMs). Existing DDPMs, while promising, face two issues: one is detail discrepancies due to the uncertain degradation factors in low-resolution images, the other is slow sampling speeds. To address these, a multimodal approach based on reversible guidance and cyclical knowledge distillation (MRKD) is introduced. This method is based on the concept where prior and posterior probabilities can assist in comprehending and predicting future events from available data and information. In the MRKD method, text and image information are separately encoded, and novel constraints are applied on prior and posterior distributions, optimizing the detailed features of the reconstructed image. In addition, due to the uncertainty of degradation factors in low-resolution images, a 'one-to-many' mapping issue arises in single-image super-resolution tasks. In response to this, the paper redefines constraints on the posterior distribution using the log-likelihood. Specifically, the Bayesian transformation of the input and output of the observation model is employed to effectively guide the diffusion process. To boost the slow sampling speed of DDPM, a cyclical knowledge distillation strategy is proposed, allowing iterative transfer of learned parameters from a high-step DDPM to a low-step model, thereby accelerating the sampling process while preserving image quality. The experimental results demonstrate that these strategies enable the model to effectively comprehend the high-level semantics and contextual information within images. Additionally, they address challenges associated with mode collapse, the loss of high-frequency details, and the complexities of long-tail data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分20
刚刚
动人的梦之完成签到,获得积分10
刚刚
天天都发疯完成签到 ,获得积分10
1秒前
wanci应助陈晗予采纳,获得10
2秒前
深情安青应助川川采纳,获得10
2秒前
2秒前
3秒前
龟龟发布了新的文献求助10
4秒前
pentjy完成签到,获得积分10
5秒前
Owen应助可靠的卿采纳,获得10
5秒前
7秒前
谨慎幻丝应助cij123采纳,获得10
7秒前
7秒前
十七发布了新的文献求助10
7秒前
Zdh同学完成签到,获得积分10
7秒前
直率的雪晴完成签到,获得积分10
8秒前
renhu完成签到,获得积分10
8秒前
yhc发布了新的文献求助10
9秒前
9秒前
9秒前
好像树胶完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
耍酷大炮发布了新的文献求助10
13秒前
gaoyang123完成签到 ,获得积分10
13秒前
13秒前
完美夏天发布了新的文献求助10
13秒前
兮颜完成签到 ,获得积分10
14秒前
15秒前
CodeCraft应助lululululululu采纳,获得10
16秒前
顺利的鱼完成签到,获得积分10
16秒前
秀丽的千山完成签到 ,获得积分10
16秒前
陶ni吉吉完成签到,获得积分10
17秒前
张开心完成签到 ,获得积分10
17秒前
张张发布了新的文献求助10
17秒前
17秒前
3天应助七七采纳,获得20
18秒前
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123109
求助须知:如何正确求助?哪些是违规求助? 2773607
关于积分的说明 7718616
捐赠科研通 2429228
什么是DOI,文献DOI怎么找? 1290188
科研通“疑难数据库(出版商)”最低求助积分说明 621783
版权声明 600251