Physics informed machine learning model for inverse dynamics in robotic manipulators

机械手 逆动力学 动力学(音乐) 反向 操纵器(设备) 计算机科学 人工智能 物理 机器人 经典力学 运动学 数学 几何学 声学
作者
Weikun Deng,Fabio Ardiani,Khanh T.P. Nguyen,Mourad Benoussaad,Kamal Medjaher
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:163: 111877-111877
标识
DOI:10.1016/j.asoc.2024.111877
摘要

In the field of robotic modelling, the challenge of parameter estimation using limited joint monitoring data presents a substantial hurdle for both traditional physics-based methods (PBMs) and machine learning (ML) techniques. PBMs grapple with modelling uncertainties, variable working conditions, diverse robotic configurations, and incomplete parameter information. ML methods face hurdles in maintaining physical consistency, interpretability, and the need for extensive training data. In response to these challenges, this paper proposes a novel approach, the Equation Embedded Neural Network (E2NN), enhanced by an innovative Liquid mechanism, which effectively blends the strengths of PBMs and ML to surmount their inherent limitations. Its primary contributions encompass: (1) a pioneering review and synthesis of hybrid frameworks integrating physical principles with ML, (2) the development and rigorous validation of the E2NN framework, and (3) the introduction of a novel physics regulator and dynamic Liquid mechanism. Particularly, the proposed E2NN leverages inverse dynamics equations to construct specialized neural network layers, featuring activation functions and interconnections expressed as composition operators, thus explicitly encoding physical knowledge. This architectural choice proves especially well-suited for tasks involving inverse dynamics and dynamic planning of robotic manipulators. The accompanying Liquid mechanism allows for dynamic adaptation of interlayer connections in response to input data, enabling real-time adjustments to changing inputs and equations of motion, ultimately enhancing flexibility and performance. Quantitative assessments of E2NN reveal its compelling performance, yielding a Mean Absolute Error (MAE) of 0.10716, closely aligned with the Benchmark Deep Residual Shrinkage Network's (DRSN) MAE of 0.10415, showcasing its competitive efficacy while achieving higher computational efficiency and a more compact model size. Robustness evaluations further confirm E2NN's adaptability, as it attains a Mean Squared Error (MSE) of 0.3, outperforming DRSN's 1.1 under varying working conditions. E2NN excels in torque trajectory fitting, achieving an impressive accuracy rate of 97.1%, underscoring its practical effectiveness. Furthermore, E2NN excels in torque prediction and parameter identification for inverse dynamics models, particularly when confronted with limited joint data and variable friction conditions. It substantially improving the discernment of robot dynamics and enhancing its applicability in real-world trajectory fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海参发布了新的文献求助10
刚刚
传奇3应助chendm采纳,获得10
刚刚
刚刚
田様应助霸体采纳,获得10
刚刚
1秒前
感性的曼凝完成签到 ,获得积分10
1秒前
1秒前
2秒前
Mr发布了新的文献求助10
2秒前
火星上的菲鹰完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
vikoel完成签到,获得积分10
4秒前
坦率灵煌发布了新的文献求助10
4秒前
changli发布了新的文献求助10
4秒前
充电宝应助就好采纳,获得10
4秒前
我是老大应助qyy采纳,获得10
4秒前
早早入眠完成签到,获得积分10
4秒前
张童鞋发布了新的文献求助10
5秒前
yanyan发布了新的文献求助10
5秒前
张张发布了新的文献求助10
5秒前
加油发布了新的文献求助10
6秒前
小祯发布了新的文献求助10
6秒前
善学以致用应助奋斗不止采纳,获得10
7秒前
7秒前
领导范儿应助细腻依云采纳,获得10
7秒前
负责又亦完成签到,获得积分10
7秒前
狂暴之武僧完成签到,获得积分10
8秒前
hyjcnhyj完成签到,获得积分10
8秒前
Oveja发布了新的文献求助10
8秒前
11秒前
11秒前
斯文败类应助凹凸先森采纳,获得10
11秒前
12秒前
负责又亦发布了新的文献求助10
12秒前
12秒前
CodeCraft应助默默采纳,获得10
12秒前
欢喜的火龙果完成签到,获得积分10
13秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410884
求助须知:如何正确求助?哪些是违规求助? 3014427
关于积分的说明 8863234
捐赠科研通 2701774
什么是DOI,文献DOI怎么找? 1481273
科研通“疑难数据库(出版商)”最低求助积分说明 684760
邀请新用户注册赠送积分活动 679281