Rapid Mass Conversion for Environmental Microplastics of Diverse Shapes

微塑料 弹丸 环境科学 焊剂(冶金) 残余物 环境化学 生物系统 化学 生物 生态学 计算机科学 算法 有机化学
作者
Qiqing Chen,Yan Yang,Huiqing Qi,Lei Su,Chencheng Zuo,Xiaoteng Shen,Wenhai Chu,Fang Li,Huahong Shi
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (24): 10776-10785 被引量:4
标识
DOI:10.1021/acs.est.4c01031
摘要

Rivers have been recognized as the primary conveyors of microplastics to the oceans, and seaward transport flux of riverine microplastics is an issue of global attention. However, there is a significant discrepancy in how microplastic concentration is expressed in field occurrence investigations (number concentration) and in mass flux (mass concentration). Of urgent need is to establish efficient conversion models to correlate these two important paradigms. Here, we first established an abundant environmental microplastic dataset and then employed a deep neural residual network (ResNet50) to successfully separate microplastics into fiber, fragment, and pellet shapes with 92.67% accuracy. We also used the circularity (C) parameter to represent the surface shape alteration of pellet-shaped microplastics, which always have a more uneven surface than other shapes. Furthermore, we added thickness information to two-dimensional images, which has been ignored by most prior research because labor-intensive processes were required. Eventually, a set of accurate models for microplastic mass conversion was developed, with absolute estimation errors of 7.1, 3.1, 0.2, and 0.9% for pellet (0.50 ≤ C < 0.75), pellet (0.75 ≤ C ≤ 1.00), fiber, and fragment microplastics, respectively; environmental samples have validated that this set is significantly faster (saves ∼2 h/100 MPs) and less biased (7-fold lower estimation errors) compared to previous empirical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
woiwxx完成签到,获得积分20
刚刚
KETU完成签到 ,获得积分10
1秒前
1秒前
鳗鱼安珊完成签到 ,获得积分10
1秒前
samtol完成签到,获得积分10
1秒前
2秒前
小蘑菇应助念清宸采纳,获得10
2秒前
3秒前
土归土完成签到,获得积分10
5秒前
文静的芝发布了新的文献求助10
6秒前
6秒前
研友_Lw4vGn发布了新的文献求助30
7秒前
7秒前
虞翩跹完成签到,获得积分10
10秒前
HEIKU应助579采纳,获得10
11秒前
11秒前
文静的芝完成签到,获得积分10
13秒前
栾小翔发布了新的文献求助30
14秒前
852应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
杳鸢应助科研通管家采纳,获得10
15秒前
生动的草莓完成签到 ,获得积分10
15秒前
泡利完成签到,获得积分10
16秒前
lll发布了新的文献求助10
17秒前
you完成签到 ,获得积分10
17秒前
慕青应助动听的蛟凤采纳,获得10
19秒前
ccq完成签到 ,获得积分10
19秒前
19秒前
李爱国应助cherrychou采纳,获得10
19秒前
叮当发布了新的文献求助10
19秒前
无私的海蓝完成签到,获得积分10
20秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214473
求助须知:如何正确求助?哪些是违规求助? 2863034
关于积分的说明 8136912
捐赠科研通 2529295
什么是DOI,文献DOI怎么找? 1363566
科研通“疑难数据库(出版商)”最低求助积分说明 643843
邀请新用户注册赠送积分活动 616348