Universal and extensible language-vision models for organ segmentation and tumor detection from abdominal computed tomography

计算机科学 可扩展性 分割 人工智能 编码(内存) 语言模型 灵活性(工程) 方案(数学) 软件 体素 机器学习 自然语言处理 程序设计语言 数学 统计 数学分析
作者
Jie Liu,Yixiao Zhang,Kang Wang,Mehmet Can Yavuz,Xiaoxi Chen,Yixuan Yuan,Haoliang Li,Yang Yang,Alan Yuille,Yucheng Tang,Zongwei Zhou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103226-103226 被引量:11
标识
DOI:10.1016/j.media.2024.103226
摘要

The advancement of artificial intelligence (AI) for organ segmentation and tumor detection is propelled by the growing availability of computed tomography (CT) datasets with detailed, per-voxel annotations. However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and learning scheme. To overcome these limitations, we propose a universal, extensible framework enabling a single model, termed Universal Model, to deal with multiple public datasets and adapt to new classes (e.g., organs/tumors). Firstly, we introduce a novel language-driven parameter generator that leverages language embeddings from large language models, enriching semantic encoding compared with one-hot encoding. Secondly, the conventional output layers are replaced with lightweight, class-specific heads, allowing Universal Model to simultaneously segment 25 organs and six types of tumors and ease the addition of new classes. We train our Universal Model on 3410 CT volumes assembled from 14 publicly available datasets and then test it on 6173 CT volumes from four external datasets. Universal Model achieves first place on six CT tasks in the Medical Segmentation Decathlon (MSD) public leaderboard and leading performance on the Beyond The Cranial Vault (BTCV) dataset. In summary, Universal Model exhibits remarkable computational efficiency (6× faster than other dataset-specific models), demonstrates strong generalization across different hospitals, transfers well to numerous downstream tasks, and more importantly, facilitates the extensibility to new classes while alleviating the catastrophic forgetting of previously learned classes. Codes, models, and datasets are available at https://github.com/ljwztc/CLIP-Driven-Universal-Model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junjie完成签到,获得积分10
刚刚
刚刚
顺利的不尤完成签到 ,获得积分10
1秒前
乐1完成签到,获得积分10
1秒前
dilli完成签到,获得积分10
1秒前
1秒前
叶言发布了新的文献求助20
2秒前
Junjie发布了新的文献求助10
3秒前
SYLH应助空格TNT采纳,获得10
3秒前
快乐小李发布了新的文献求助10
4秒前
现代的雪糕完成签到,获得积分10
4秒前
光亮白山发布了新的文献求助10
5秒前
七里香完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
狡猾的菠萝完成签到 ,获得积分10
6秒前
科目三应助fishbig采纳,获得10
6秒前
研友_V8Qmr8完成签到,获得积分10
7秒前
乐1发布了新的文献求助10
7秒前
8秒前
9秒前
喵姐完成签到,获得积分10
9秒前
万能图书馆应助yszyy23采纳,获得10
9秒前
9秒前
DYQin发布了新的文献求助30
10秒前
Ava应助帝释天I采纳,获得10
10秒前
姜积木发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
传奇3应助笙霜半夏采纳,获得10
10秒前
10秒前
烟花应助jrzsy采纳,获得200
10秒前
知名不具完成签到 ,获得积分10
10秒前
小马甲应助眨眼采纳,获得10
11秒前
11秒前
11秒前
12秒前
Wayi发布了新的文献求助10
12秒前
张传茁完成签到,获得积分10
13秒前
小羊烧鸡完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288