HCNet: Hierarchical Feature Aggregation and Cross-Modal Feature Alignment for Remote Sensing Image Captioning

隐藏字幕 计算机科学 特征(语言学) 情态动词 人工智能 图像(数学) 遥感 特征提取 模式识别(心理学) 计算机视觉 地质学 哲学 语言学 化学 高分子化学
作者
Zhigang Yang,Qiang Li,Yuan Yuan,Qi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:7
标识
DOI:10.1109/tgrs.2024.3401576
摘要

Remote sensing image captioning aims to describe the crucial objects from remote sensing images in the form of natural language. The inefficient utilization of object texture and semantic features in images, along with the ineffective cross-modal alignment between image and text features, are the primary factors that impact the model to generate high-quality captions. To alleviate this trouble, this paper presents a network for remote sensing image captioning, namely HCNet, including hierarchical feature aggregation and cross-modal feature alignment. Specifically, a hierarchical feature aggregation module is proposed to obtain a comprehensive representation of vision features, which is beneficial for producing accurate descriptions. Considering the disparities between different modal features, we design a cross-modal feature interaction module in the decoder to facilitate feature alignment. It can fully utilize cross-modal features to localize critical objects. Besides, a cross-modal feature align loss is introduced to realize the alignment between image and text features. Extensive experiments show our HCNet can achieve satisfactory performance. Especially, we demonstrate significant performance improvements of +14.15% CIDEr score on NWPU datasets compared to existing approaches. The source code is publicly available at https://github.com/CVer-Yang/HCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵加完成签到,获得积分20
刚刚
北欧海盗完成签到,获得积分10
刚刚
大力的忆霜完成签到 ,获得积分10
刚刚
典雅碧空完成签到,获得积分10
1秒前
赵若君关注了科研通微信公众号
1秒前
2秒前
3秒前
3秒前
芭娜55完成签到 ,获得积分10
3秒前
丘比特应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
松花蛋完成签到,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
时闲应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得30
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
燕儿完成签到,获得积分10
5秒前
qian完成签到,获得积分20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
小苏同学应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得20
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965950
求助须知:如何正确求助?哪些是违规求助? 3511289
关于积分的说明 11157176
捐赠科研通 3245859
什么是DOI,文献DOI怎么找? 1793182
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286