HCNet: Hierarchical Feature Aggregation and Cross-Modal Feature Alignment for Remote Sensing Image Captioning

隐藏字幕 计算机科学 特征(语言学) 情态动词 人工智能 图像(数学) 遥感 特征提取 模式识别(心理学) 计算机视觉 地质学 哲学 语言学 化学 高分子化学
作者
Zhigang Yang,Qiang Li,Yuan Yuan,Qi Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:2
标识
DOI:10.1109/tgrs.2024.3401576
摘要

Remote sensing image captioning aims to describe the crucial objects from remote sensing images in the form of natural language. The inefficient utilization of object texture and semantic features in images, along with the ineffective cross-modal alignment between image and text features, are the primary factors that impact the model to generate high-quality captions. To alleviate this trouble, this paper presents a network for remote sensing image captioning, namely HCNet, including hierarchical feature aggregation and cross-modal feature alignment. Specifically, a hierarchical feature aggregation module is proposed to obtain a comprehensive representation of vision features, which is beneficial for producing accurate descriptions. Considering the disparities between different modal features, we design a cross-modal feature interaction module in the decoder to facilitate feature alignment. It can fully utilize cross-modal features to localize critical objects. Besides, a cross-modal feature align loss is introduced to realize the alignment between image and text features. Extensive experiments show our HCNet can achieve satisfactory performance. Especially, we demonstrate significant performance improvements of +14.15% CIDEr score on NWPU datasets compared to existing approaches. The source code is publicly available at https://github.com/CVer-Yang/HCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助zhang采纳,获得10
刚刚
充电宝应助木头采纳,获得10
刚刚
FashionBoy应助ZKK采纳,获得10
1秒前
在青城吃水饺的麋鹿完成签到 ,获得积分10
1秒前
小马甲应助wang5945采纳,获得10
1秒前
Owen应助门前大桥下采纳,获得10
2秒前
3秒前
晓晓晓完成签到,获得积分10
4秒前
xixia发布了新的文献求助10
5秒前
8R60d8应助Evan采纳,获得10
5秒前
CodeCraft应助墨染清风凉采纳,获得10
6秒前
WUWUWU完成签到,获得积分10
6秒前
充电宝应助zai采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
海风应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
QDU应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助俭朴的猫咪采纳,获得10
8秒前
07应助俭朴的猫咪采纳,获得10
8秒前
传奇3应助俭朴的猫咪采纳,获得10
9秒前
Ava应助俭朴的猫咪采纳,获得10
9秒前
科研通AI2S应助俭朴的猫咪采纳,获得10
9秒前
科研通AI2S应助俭朴的猫咪采纳,获得10
9秒前
嗯哼应助俭朴的猫咪采纳,获得10
9秒前
草木人完成签到,获得积分10
9秒前
9秒前
vivianzhang完成签到,获得积分10
10秒前
活泼雁兰发布了新的文献求助20
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297