SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:154: 102919-102919 被引量:5
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MASAMI发布了新的文献求助10
刚刚
Jasper应助葛一豪采纳,获得10
1秒前
烟花应助null采纳,获得10
1秒前
wipmzxu完成签到,获得积分10
1秒前
1秒前
1秒前
dan发布了新的文献求助10
2秒前
xxx发布了新的文献求助10
2秒前
愉快的花卷完成签到,获得积分10
2秒前
2秒前
黑曜石发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
下X下完成签到,获得积分20
3秒前
张乔然发布了新的文献求助10
3秒前
晞晞完成签到,获得积分10
4秒前
库里发布了新的文献求助10
4秒前
阿敬发布了新的文献求助30
5秒前
善良飞丹完成签到,获得积分10
5秒前
韩明轩发布了新的文献求助10
6秒前
公司账号2发布了新的文献求助10
6秒前
研友_VZG7GZ应助gg采纳,获得10
6秒前
一一发布了新的文献求助10
6秒前
longsay完成签到,获得积分10
6秒前
情怀应助qwp采纳,获得10
6秒前
7秒前
武淑晴发布了新的文献求助10
8秒前
在水一方应助刘小蕊采纳,获得10
8秒前
BareBear应助顺利的雪莲采纳,获得10
8秒前
张哈哈发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
11秒前
lucas发布了新的文献求助10
11秒前
素雅发布了新的文献求助10
11秒前
比比完成签到,获得积分10
11秒前
Rheanna完成签到,获得积分10
11秒前
三水发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246