SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:154: 102919-102919
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊秀的念烟完成签到,获得积分10
2秒前
Wt完成签到,获得积分10
4秒前
geogydeniel完成签到 ,获得积分10
5秒前
Hoyshin发布了新的文献求助10
6秒前
因我而起发布了新的文献求助10
6秒前
8秒前
8秒前
beatabeast完成签到 ,获得积分10
9秒前
10秒前
xkyi发布了新的文献求助10
10秒前
10秒前
12秒前
强哥很强完成签到,获得积分10
13秒前
14秒前
hebhm完成签到,获得积分10
15秒前
15秒前
JamesPei应助勤奋的不斜采纳,获得10
15秒前
合适依秋完成签到 ,获得积分10
15秒前
18秒前
超级元以完成签到,获得积分10
19秒前
Dissipater发布了新的文献求助20
19秒前
pgjwl完成签到 ,获得积分10
20秒前
21秒前
英俊的铭应助鳗鱼语薇采纳,获得10
21秒前
赵云发布了新的文献求助10
21秒前
打打应助欣欣采纳,获得10
21秒前
研友_VZG7GZ应助聚乙二醇采纳,获得10
21秒前
丘比特应助纪欣静采纳,获得10
23秒前
我是老大应助意而往南飞采纳,获得10
24秒前
pp发布了新的文献求助10
25秒前
霍小美发布了新的文献求助10
25秒前
25秒前
慕青应助王欣采纳,获得10
26秒前
桐桐应助mimi采纳,获得10
27秒前
27秒前
CodeCraft应助第二十篇采纳,获得10
28秒前
28秒前
高挑的天寿完成签到,获得积分10
28秒前
28秒前
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264886
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331749
捐赠科研通 2575234
什么是DOI,文献DOI怎么找? 1399714
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353