已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102919-102919 被引量:5
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
clown发布了新的文献求助10
2秒前
3秒前
福大命大发布了新的文献求助10
3秒前
斯文败类应助凤梨采纳,获得10
3秒前
完美蚂蚁完成签到,获得积分20
4秒前
所所应助赖胖胖采纳,获得10
5秒前
11发布了新的文献求助10
6秒前
方法发布了新的文献求助10
7秒前
️语完成签到 ,获得积分10
8秒前
10秒前
sun完成签到 ,获得积分10
11秒前
車侖完成签到 ,获得积分10
13秒前
甜美宛儿完成签到,获得积分10
13秒前
11完成签到,获得积分20
14秒前
15秒前
16秒前
19秒前
顺心的安珊完成签到 ,获得积分10
19秒前
zzzzzz完成签到 ,获得积分10
21秒前
Arthur完成签到,获得积分20
22秒前
今后应助人间烟火采纳,获得10
23秒前
赖胖胖发布了新的文献求助10
23秒前
星光熠熠发布了新的文献求助10
24秒前
背后乌冬面完成签到 ,获得积分10
24秒前
11关注了科研通微信公众号
24秒前
Lucas应助多年以后采纳,获得10
25秒前
27秒前
27秒前
蓝天白云发布了新的文献求助10
29秒前
31秒前
31秒前
32秒前
37秒前
37秒前
光速2000完成签到,获得积分10
40秒前
西瓜发布了新的文献求助10
40秒前
多年以后发布了新的文献求助10
42秒前
CipherSage应助星光熠熠采纳,获得10
43秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216