SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102919-102919 被引量:5
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助小远采纳,获得10
刚刚
宁annie完成签到,获得积分10
刚刚
白日幻想家完成签到 ,获得积分10
1秒前
郁盈完成签到,获得积分10
1秒前
万能图书馆应助xdc采纳,获得10
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
MHCL完成签到 ,获得积分10
4秒前
哈基米德应助一颗小番茄采纳,获得30
4秒前
矮小的天菱完成签到,获得积分10
5秒前
长安发布了新的文献求助10
5秒前
8秒前
ddddddd完成签到,获得积分20
9秒前
章半仙完成签到,获得积分10
10秒前
11秒前
13秒前
amberzyc应助小远采纳,获得10
14秒前
qiongqiong完成签到,获得积分10
15秒前
淡定的依瑶完成签到,获得积分10
16秒前
江璃发布了新的文献求助10
18秒前
19秒前
20秒前
美丽的安珊完成签到,获得积分10
21秒前
21秒前
23秒前
Gilana完成签到,获得积分10
23秒前
xyh发布了新的文献求助10
23秒前
江璃完成签到,获得积分10
24秒前
TT发布了新的文献求助10
24秒前
美梦成真完成签到,获得积分10
25秒前
Gakay完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
szj完成签到,获得积分0
27秒前
旦皋完成签到,获得积分10
27秒前
赘婿应助花壳在逃野猪采纳,获得10
28秒前
卷卷完成签到,获得积分10
30秒前
JSY完成签到 ,获得积分20
30秒前
xyh完成签到,获得积分10
31秒前
小曾应助Florencia采纳,获得10
32秒前
神外王001完成签到 ,获得积分10
32秒前
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029