SSM-Net: Semi-supervised multi-task network for joint lesion segmentation and classification from pancreatic EUS images

计算机科学 人工智能 模式识别(心理学) 分割
作者
Jiajia Li,Pingping Zhang,Xia Yang,Lei Zhu,Teng Wang,Ping Zhang,Ruhan Liu,Bin Sheng,Kaixuan Wang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102919-102919 被引量:5
标识
DOI:10.1016/j.artmed.2024.102919
摘要

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenbaka发布了新的文献求助10
2秒前
zxy完成签到,获得积分10
2秒前
2秒前
在水一方应助阳立宇采纳,获得10
3秒前
3秒前
3秒前
希望天下0贩的0应助Sky36001采纳,获得10
3秒前
4秒前
老赵是真的帅完成签到,获得积分20
4秒前
Paralloria发布了新的文献求助10
5秒前
晨曦完成签到,获得积分10
7秒前
llllhh发布了新的文献求助10
8秒前
zxy发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
12秒前
12秒前
14秒前
隐形曼青应助i3utter采纳,获得10
14秒前
Paralloria完成签到,获得积分10
15秒前
Transition发布了新的文献求助30
16秒前
16秒前
17秒前
烟花应助momo采纳,获得10
17秒前
congenialboy发布了新的文献求助10
19秒前
Ai完成签到,获得积分10
20秒前
21秒前
22秒前
24秒前
ddddansu发布了新的文献求助10
26秒前
hsuan风向仪发布了新的文献求助100
28秒前
酷波er应助然大宝采纳,获得10
28秒前
ukmy发布了新的文献求助10
28秒前
29秒前
29秒前
LUO完成签到 ,获得积分10
30秒前
Danny完成签到,获得积分10
33秒前
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190