清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction

计算机科学 图形 节点(物理) 水准点(测量) 注意力网络 理论计算机科学 拓扑(电路) 人工智能 数学 大地测量学 结构工程 组合数学 工程类 地理
作者
Hui Li,Bin Wu,Miaomiao Sun,Yangdong Ye,Zhenfeng Zhu,Kuisheng Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110492-110492 被引量:15
标识
DOI:10.1016/j.knosys.2023.110492
摘要

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) reveals the mechanisms of biological processes, thereby contributing to disease diagnosis and treatment. Recently, graph neural networks (GNNs) have achieved remarkable progress in this task due to their consideration of both node attributes and graph topology. Nevertheless, existing GNN-based methods use only one type of node attribute, and the possible bias of a single view leads them to learn suboptimal node representations. Moreover, the underlying mechanisms of action between lncRNAs and miRNAs are complex. Ignoring the importance of neighboring nodes to the target node and the influence of different order neighborhood information makes them fail to learn satisfactory topological information. To this end, we propose a novel Multi-view Graph Neural Network with Cascaded ATtention (MGCAT) for lncRNA-miRNA interaction (LMI) prediction, where cascaded attention is a key ingredient consisting of view-level, node-level, and layer-level attentions. Specifically, we first construct a multi-attributed LMI graph to fully characterize lncRNAs and miRNAs, where nodes have multiple node attributes (i.e., multi-view features). Next, view-level attention dynamically integrates multi-view features to capture the inherent attribute information of nodes. Then, node-level attention iteratively aggregates the neighborhood information of each node. Finally, layer-level attention adaptively combines integrated features and different order neighborhood information to obtain informative node representations. Extensive experiments on four benchmark datasets show that MGCAT consistently outperforms recent state-of-the-art methods. Further case studies demonstrate the potential ability of MGCAT to identify novel LMIs. Code and datasets are publicly available at https://github.com/ai4slab/mgcat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助ceeray23采纳,获得20
3秒前
黑昼发布了新的文献求助10
6秒前
两个榴莲完成签到,获得积分0
6秒前
22秒前
Raunio完成签到,获得积分10
24秒前
33秒前
35秒前
ceeray23发布了新的文献求助20
38秒前
souther完成签到,获得积分0
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
sage_kakarotto完成签到 ,获得积分10
1分钟前
大喜喜发布了新的文献求助200
1分钟前
AA完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
发呆员发布了新的文献求助10
2分钟前
旅行者完成签到,获得积分10
2分钟前
TXZ06发布了新的文献求助10
2分钟前
科研通AI6应助发呆员采纳,获得10
2分钟前
lululemontree应助大刘采纳,获得30
3分钟前
3分钟前
大喜喜发布了新的文献求助10
3分钟前
LinglongCai完成签到 ,获得积分10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
雪山飞龙完成签到,获得积分10
4分钟前
barry发布了新的文献求助10
4分钟前
ceeray23发布了新的文献求助20
4分钟前
tt完成签到,获得积分10
4分钟前
发呆员发布了新的文献求助10
4分钟前
科研通AI2S应助发呆员采纳,获得10
4分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4613925
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531