亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction

计算机科学 图形 节点(物理) 水准点(测量) 注意力网络 理论计算机科学 拓扑(电路) 人工智能 数学 大地测量学 结构工程 组合数学 工程类 地理
作者
Hui Li,Bin Wu,Miaomiao Sun,Yangdong Ye,Zhenfeng Zhu,Kuisheng Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110492-110492 被引量:15
标识
DOI:10.1016/j.knosys.2023.110492
摘要

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) reveals the mechanisms of biological processes, thereby contributing to disease diagnosis and treatment. Recently, graph neural networks (GNNs) have achieved remarkable progress in this task due to their consideration of both node attributes and graph topology. Nevertheless, existing GNN-based methods use only one type of node attribute, and the possible bias of a single view leads them to learn suboptimal node representations. Moreover, the underlying mechanisms of action between lncRNAs and miRNAs are complex. Ignoring the importance of neighboring nodes to the target node and the influence of different order neighborhood information makes them fail to learn satisfactory topological information. To this end, we propose a novel Multi-view Graph Neural Network with Cascaded ATtention (MGCAT) for lncRNA-miRNA interaction (LMI) prediction, where cascaded attention is a key ingredient consisting of view-level, node-level, and layer-level attentions. Specifically, we first construct a multi-attributed LMI graph to fully characterize lncRNAs and miRNAs, where nodes have multiple node attributes (i.e., multi-view features). Next, view-level attention dynamically integrates multi-view features to capture the inherent attribute information of nodes. Then, node-level attention iteratively aggregates the neighborhood information of each node. Finally, layer-level attention adaptively combines integrated features and different order neighborhood information to obtain informative node representations. Extensive experiments on four benchmark datasets show that MGCAT consistently outperforms recent state-of-the-art methods. Further case studies demonstrate the potential ability of MGCAT to identify novel LMIs. Code and datasets are publicly available at https://github.com/ai4slab/mgcat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AdamJie发布了新的文献求助10
2秒前
CQUzc完成签到 ,获得积分10
11秒前
科目三应助StonesKing采纳,获得10
32秒前
隐形曼青应助直率的芫采纳,获得10
37秒前
科研通AI6应助道天采纳,获得10
40秒前
43秒前
酷波er应助ukmy采纳,获得10
46秒前
1分钟前
ukmy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
StonesKing发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Rr完成签到,获得积分10
1分钟前
StonesKing完成签到,获得积分20
1分钟前
1分钟前
搜集达人应助于早上采纳,获得10
1分钟前
zuyin完成签到 ,获得积分10
1分钟前
1分钟前
直率的芫发布了新的文献求助10
1分钟前
cmc发布了新的文献求助10
1分钟前
2分钟前
Miao完成签到,获得积分10
2分钟前
英姑应助lcw1998采纳,获得10
2分钟前
2分钟前
kjshkdg发布了新的文献求助10
2分钟前
冬柳发布了新的文献求助10
2分钟前
tszjw168完成签到 ,获得积分0
2分钟前
kjshkdg完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
莉莉丝完成签到,获得积分10
2分钟前
2分钟前
道天发布了新的文献求助10
2分钟前
于早上发布了新的文献求助10
2分钟前
迷路的沛芹完成签到 ,获得积分10
3分钟前
于早上完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568045
关于积分的说明 14312350
捐赠科研通 4493960
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426205