已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction

计算机科学 图形 节点(物理) 水准点(测量) 注意力网络 理论计算机科学 拓扑(电路) 人工智能 数学 大地测量学 结构工程 组合数学 工程类 地理
作者
Hui Li,Bin Wu,Miaomiao Sun,Yangdong Ye,Zhenfeng Zhu,Kuisheng Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110492-110492 被引量:15
标识
DOI:10.1016/j.knosys.2023.110492
摘要

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) reveals the mechanisms of biological processes, thereby contributing to disease diagnosis and treatment. Recently, graph neural networks (GNNs) have achieved remarkable progress in this task due to their consideration of both node attributes and graph topology. Nevertheless, existing GNN-based methods use only one type of node attribute, and the possible bias of a single view leads them to learn suboptimal node representations. Moreover, the underlying mechanisms of action between lncRNAs and miRNAs are complex. Ignoring the importance of neighboring nodes to the target node and the influence of different order neighborhood information makes them fail to learn satisfactory topological information. To this end, we propose a novel Multi-view Graph Neural Network with Cascaded ATtention (MGCAT) for lncRNA-miRNA interaction (LMI) prediction, where cascaded attention is a key ingredient consisting of view-level, node-level, and layer-level attentions. Specifically, we first construct a multi-attributed LMI graph to fully characterize lncRNAs and miRNAs, where nodes have multiple node attributes (i.e., multi-view features). Next, view-level attention dynamically integrates multi-view features to capture the inherent attribute information of nodes. Then, node-level attention iteratively aggregates the neighborhood information of each node. Finally, layer-level attention adaptively combines integrated features and different order neighborhood information to obtain informative node representations. Extensive experiments on four benchmark datasets show that MGCAT consistently outperforms recent state-of-the-art methods. Further case studies demonstrate the potential ability of MGCAT to identify novel LMIs. Code and datasets are publicly available at https://github.com/ai4slab/mgcat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐震完成签到,获得积分10
1秒前
哈哈哈发布了新的文献求助10
1秒前
3秒前
4秒前
小九九完成签到 ,获得积分20
4秒前
5秒前
学术小牛发布了新的文献求助10
5秒前
科研通AI6应助上官采纳,获得10
7秒前
林间发布了新的文献求助10
8秒前
小枣完成签到 ,获得积分10
9秒前
Camellia发布了新的文献求助10
10秒前
Z小姐完成签到 ,获得积分10
11秒前
文杰完成签到,获得积分10
11秒前
12秒前
Zz完成签到 ,获得积分10
12秒前
13秒前
若月画萤完成签到,获得积分10
14秒前
上官若男应助哈哈哈采纳,获得10
14秒前
15秒前
科研通AI6应助上官采纳,获得30
16秒前
对对对完成签到 ,获得积分10
16秒前
sun发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
mmyhn应助科研通管家采纳,获得20
19秒前
田様应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
mmyhn应助科研通管家采纳,获得20
20秒前
lim完成签到,获得积分10
20秒前
21秒前
只如初完成签到 ,获得积分10
21秒前
1123048683wm发布了新的文献求助10
22秒前
25秒前
Azumah发布了新的文献求助10
26秒前
27秒前
吴开珍完成签到 ,获得积分10
27秒前
Sleep15发布了新的文献求助10
28秒前
赘婿应助林间采纳,获得30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590231
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794913
捐赠科研通 4630761
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576