Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction

计算机科学 图形 节点(物理) 水准点(测量) 注意力网络 理论计算机科学 拓扑(电路) 人工智能 数学 大地测量学 结构工程 组合数学 工程类 地理
作者
Hui Li,Bin Wu,Miaomiao Sun,Yangdong Ye,Zhenfeng Zhu,Kuisheng Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110492-110492 被引量:15
标识
DOI:10.1016/j.knosys.2023.110492
摘要

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) reveals the mechanisms of biological processes, thereby contributing to disease diagnosis and treatment. Recently, graph neural networks (GNNs) have achieved remarkable progress in this task due to their consideration of both node attributes and graph topology. Nevertheless, existing GNN-based methods use only one type of node attribute, and the possible bias of a single view leads them to learn suboptimal node representations. Moreover, the underlying mechanisms of action between lncRNAs and miRNAs are complex. Ignoring the importance of neighboring nodes to the target node and the influence of different order neighborhood information makes them fail to learn satisfactory topological information. To this end, we propose a novel Multi-view Graph Neural Network with Cascaded ATtention (MGCAT) for lncRNA-miRNA interaction (LMI) prediction, where cascaded attention is a key ingredient consisting of view-level, node-level, and layer-level attentions. Specifically, we first construct a multi-attributed LMI graph to fully characterize lncRNAs and miRNAs, where nodes have multiple node attributes (i.e., multi-view features). Next, view-level attention dynamically integrates multi-view features to capture the inherent attribute information of nodes. Then, node-level attention iteratively aggregates the neighborhood information of each node. Finally, layer-level attention adaptively combines integrated features and different order neighborhood information to obtain informative node representations. Extensive experiments on four benchmark datasets show that MGCAT consistently outperforms recent state-of-the-art methods. Further case studies demonstrate the potential ability of MGCAT to identify novel LMIs. Code and datasets are publicly available at https://github.com/ai4slab/mgcat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助alex采纳,获得10
刚刚
李健的小迷弟应助炎燚采纳,获得10
1秒前
闪闪的雨柏完成签到,获得积分10
2秒前
科研通AI6应助shengsheng采纳,获得10
3秒前
3秒前
科研通AI2S应助weixin112233采纳,获得10
3秒前
酷波er应助May采纳,获得10
3秒前
4秒前
4秒前
爱吃米线发布了新的文献求助10
4秒前
郑浩龙完成签到,获得积分10
4秒前
4秒前
Jane_Xin发布了新的文献求助10
5秒前
79完成签到,获得积分10
6秒前
ll完成签到,获得积分10
6秒前
6秒前
小卡拉米应助黎明采纳,获得10
6秒前
XiaoYuuu完成签到,获得积分10
6秒前
FashionBoy应助喂喂喂采纳,获得10
7秒前
Lei完成签到,获得积分10
7秒前
饭米粒发布了新的文献求助10
10秒前
10秒前
魔音甜菜完成签到,获得积分10
10秒前
ankang完成签到,获得积分10
10秒前
10秒前
11秒前
度帕明完成签到,获得积分10
12秒前
Jasper应助粗心的无剑采纳,获得10
12秒前
FashionBoy应助甜蜜的松思采纳,获得10
12秒前
13秒前
迅速的谷菱关注了科研通微信公众号
13秒前
13秒前
ankang发布了新的文献求助10
14秒前
14秒前
liliping发布了新的文献求助10
14秒前
加百莉完成签到,获得积分10
15秒前
lxp完成签到,获得积分10
15秒前
Song完成签到,获得积分10
15秒前
Apei发布了新的文献求助10
16秒前
喵咪西西完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524