亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction

计算机科学 图形 节点(物理) 水准点(测量) 注意力网络 理论计算机科学 拓扑(电路) 人工智能 数学 大地测量学 结构工程 组合数学 工程类 地理
作者
Hui Li,Bin Wu,Miaomiao Sun,Yangdong Ye,Zhenfeng Zhu,Kuisheng Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110492-110492 被引量:15
标识
DOI:10.1016/j.knosys.2023.110492
摘要

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) reveals the mechanisms of biological processes, thereby contributing to disease diagnosis and treatment. Recently, graph neural networks (GNNs) have achieved remarkable progress in this task due to their consideration of both node attributes and graph topology. Nevertheless, existing GNN-based methods use only one type of node attribute, and the possible bias of a single view leads them to learn suboptimal node representations. Moreover, the underlying mechanisms of action between lncRNAs and miRNAs are complex. Ignoring the importance of neighboring nodes to the target node and the influence of different order neighborhood information makes them fail to learn satisfactory topological information. To this end, we propose a novel Multi-view Graph Neural Network with Cascaded ATtention (MGCAT) for lncRNA-miRNA interaction (LMI) prediction, where cascaded attention is a key ingredient consisting of view-level, node-level, and layer-level attentions. Specifically, we first construct a multi-attributed LMI graph to fully characterize lncRNAs and miRNAs, where nodes have multiple node attributes (i.e., multi-view features). Next, view-level attention dynamically integrates multi-view features to capture the inherent attribute information of nodes. Then, node-level attention iteratively aggregates the neighborhood information of each node. Finally, layer-level attention adaptively combines integrated features and different order neighborhood information to obtain informative node representations. Extensive experiments on four benchmark datasets show that MGCAT consistently outperforms recent state-of-the-art methods. Further case studies demonstrate the potential ability of MGCAT to identify novel LMIs. Code and datasets are publicly available at https://github.com/ai4slab/mgcat.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Utopia1632完成签到,获得积分10
27秒前
小鸡完成签到 ,获得积分10
40秒前
48秒前
49秒前
知悉发布了新的文献求助10
54秒前
ding应助科研通管家采纳,获得10
59秒前
三岁应助ceeray23采纳,获得20
1分钟前
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
zly完成签到 ,获得积分0
1分钟前
Nilnael发布了新的文献求助10
1分钟前
浮游应助ceeray23采纳,获得20
1分钟前
HaCat完成签到,获得积分10
1分钟前
1分钟前
1分钟前
采薇发布了新的文献求助10
1分钟前
yuan完成签到,获得积分10
1分钟前
小蘑菇应助jing采纳,获得10
1分钟前
搜集达人应助Luke采纳,获得10
2分钟前
2分钟前
2分钟前
jing发布了新的文献求助10
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
程小柒完成签到 ,获得积分10
2分钟前
Demi_Ming关注了科研通微信公众号
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
坚强的秋白完成签到,获得积分10
3分钟前
xiawanren00完成签到,获得积分10
4分钟前
4分钟前
采薇发布了新的文献求助10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
无极微光应助科研通管家采纳,获得20
4分钟前
任性云朵完成签到 ,获得积分10
5分钟前
大模型应助jing采纳,获得10
5分钟前
5分钟前
奋斗一刀完成签到,获得积分20
5分钟前
6分钟前
6分钟前
jing发布了新的文献求助10
6分钟前
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644846
求助须知:如何正确求助?哪些是违规求助? 4765929
关于积分的说明 15025735
捐赠科研通 4803180
什么是DOI,文献DOI怎么找? 2568067
邀请新用户注册赠送积分活动 1525533
关于科研通互助平台的介绍 1485079