Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction

计算机科学 图形 节点(物理) 水准点(测量) 注意力网络 理论计算机科学 拓扑(电路) 人工智能 数学 大地测量学 结构工程 组合数学 工程类 地理
作者
Hui Li,Bin Wu,Miaomiao Sun,Yangdong Ye,Zhenfeng Zhu,Kuisheng Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:268: 110492-110492 被引量:15
标识
DOI:10.1016/j.knosys.2023.110492
摘要

Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) reveals the mechanisms of biological processes, thereby contributing to disease diagnosis and treatment. Recently, graph neural networks (GNNs) have achieved remarkable progress in this task due to their consideration of both node attributes and graph topology. Nevertheless, existing GNN-based methods use only one type of node attribute, and the possible bias of a single view leads them to learn suboptimal node representations. Moreover, the underlying mechanisms of action between lncRNAs and miRNAs are complex. Ignoring the importance of neighboring nodes to the target node and the influence of different order neighborhood information makes them fail to learn satisfactory topological information. To this end, we propose a novel Multi-view Graph Neural Network with Cascaded ATtention (MGCAT) for lncRNA-miRNA interaction (LMI) prediction, where cascaded attention is a key ingredient consisting of view-level, node-level, and layer-level attentions. Specifically, we first construct a multi-attributed LMI graph to fully characterize lncRNAs and miRNAs, where nodes have multiple node attributes (i.e., multi-view features). Next, view-level attention dynamically integrates multi-view features to capture the inherent attribute information of nodes. Then, node-level attention iteratively aggregates the neighborhood information of each node. Finally, layer-level attention adaptively combines integrated features and different order neighborhood information to obtain informative node representations. Extensive experiments on four benchmark datasets show that MGCAT consistently outperforms recent state-of-the-art methods. Further case studies demonstrate the potential ability of MGCAT to identify novel LMIs. Code and datasets are publicly available at https://github.com/ai4slab/mgcat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤冰菱完成签到,获得积分10
1秒前
1秒前
fangliu发布了新的文献求助10
1秒前
Zoeyyy完成签到,获得积分20
2秒前
DLDL发布了新的文献求助10
2秒前
AJ发布了新的文献求助10
2秒前
2秒前
整齐硬币发布了新的文献求助10
3秒前
狸狸发布了新的文献求助10
3秒前
科研通AI6应助淡淡十三采纳,获得10
3秒前
4秒前
5秒前
Zoeyyy发布了新的文献求助10
5秒前
思源应助lucky采纳,获得80
5秒前
5秒前
Antonio完成签到 ,获得积分0
6秒前
00279完成签到,获得积分10
6秒前
6秒前
张萧艾完成签到,获得积分20
7秒前
7秒前
7890733发布了新的文献求助10
8秒前
Nightfall发布了新的文献求助10
9秒前
充电宝应助Augenstern采纳,获得20
9秒前
李爱国应助多多采纳,获得10
9秒前
gao发布了新的文献求助10
9秒前
七慕凉应助等一个晴天采纳,获得10
9秒前
星辰大海应助呜啦啦采纳,获得10
10秒前
10秒前
sunny33发布了新的文献求助10
11秒前
11秒前
浮游应助畅快访蕊采纳,获得10
11秒前
kkyy发布了新的文献求助10
11秒前
witty完成签到,获得积分10
12秒前
整齐硬币完成签到,获得积分10
12秒前
Akim应助AJ采纳,获得30
13秒前
周三完成签到 ,获得积分10
13秒前
Irene发布了新的文献求助10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443139
求助须知:如何正确求助?哪些是违规求助? 4553050
关于积分的说明 14240730
捐赠科研通 4474652
什么是DOI,文献DOI怎么找? 2452098
邀请新用户注册赠送积分活动 1443042
关于科研通互助平台的介绍 1418705