Depression detection on online social network with multivariate time series feature of user depressive symptoms

可解释性 计算机科学 多元统计 特征(语言学) 萧条(经济学) 机器学习 构造(python库) 人工智能 数据挖掘 语言学 哲学 宏观经济学 经济 程序设计语言
作者
Yicheng Cai,Haizhou Wang,Huali Ye,Yanwen Jin,Wei Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:217: 119538-119538 被引量:15
标识
DOI:10.1016/j.eswa.2023.119538
摘要

In recent years, depression has attracted worldwide attention because of its prevalence and great risk for suicide. Existing studies have confirmed the feasibility of depression detection on online social networks. Most existing researches extract the overall features of users during a specific period, which cannot reflect the dynamic variation of depression. Besides, the methods proposed in these studies are often lack in interpretability and fail to establish the correlation between features and depressive symptoms in clinical. To address these problems, we propose a novel framework for depression detection based on multivariate time series feature of user depressive symptoms. Firstly, we construct and publish a well-labeled dataset collecting from the most popular Chinese social network platform Sina Weibo. To the best of our knowledge, it is the first large-scale depression dataset with complete collection of user tweeting histories, which includes 3,711 depressed users and 19,526 non-depressed users. Then, we propose a feature extraction method that reveals user depression symptoms variation in the form of multivariate time series. Moreover, we explore the various influencing factors to the performance of our proposed framework. In addition, we also explore the contributions of features to classification as well as their interpretability and conduct feature ablations on them. The experimental results show that our proposed method is effective and the extracted multivariate time series feature can well characterize the depressive state variation of users. Finally, we analyze the shortcomings and challenges of this study. Our research work also provides methods and ideas for tracking and visualizing the development of depression among online social network users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bestronging发布了新的文献求助30
刚刚
酷波er应助wsybf1314采纳,获得10
1秒前
1秒前
3秒前
fat发布了新的文献求助10
4秒前
4秒前
na完成签到,获得积分10
4秒前
5秒前
研友_Z30GJ8完成签到 ,获得积分10
5秒前
科研通AI2S应助car子采纳,获得10
6秒前
xy发布了新的文献求助30
6秒前
Alex完成签到,获得积分20
7秒前
7秒前
领导范儿应助昌昌昌采纳,获得10
7秒前
7秒前
乐乐应助醉爱天下采纳,获得10
7秒前
wrufhg完成签到,获得积分10
8秒前
在水一方应助雪菜采纳,获得10
9秒前
yuan发布了新的文献求助10
9秒前
9秒前
王磊发布了新的文献求助10
10秒前
十一完成签到 ,获得积分10
10秒前
11秒前
李健应助ccc采纳,获得10
11秒前
桐桐应助大笨笨采纳,获得10
13秒前
13秒前
木头人应助水牛采纳,获得20
14秒前
16秒前
万能图书馆应助张狗蛋采纳,获得10
17秒前
妖精发布了新的文献求助20
17秒前
CodeCraft应助LUO采纳,获得10
19秒前
风趣的涵柏完成签到 ,获得积分10
19秒前
Jasper应助NickyLee采纳,获得20
20秒前
77seven发布了新的文献求助10
20秒前
小月完成签到,获得积分10
22秒前
伍思光发布了新的文献求助10
23秒前
botanist完成签到 ,获得积分10
24秒前
25秒前
小月发布了新的文献求助10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310783
求助须知:如何正确求助?哪些是违规求助? 2943581
关于积分的说明 8515733
捐赠科研通 2618917
什么是DOI,文献DOI怎么找? 1431642
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649714