Application of deep learning algorithms in automatic sonographic localization and segmentation of the median nerve: A systematic review and meta-analysis

人工智能 算法 计算机科学 分割 医学 机器学习 深度学习 荟萃分析 模式识别(心理学) 病理
作者
Jia‐Chi Wang,Yi-Chung Shu,Che-Yu Lin,Wei‐Ting Wu,Lan-Rong Chen,Yu‐Cheng Lo,Hsiao-Chi Chiu,Levent Özçakar,Ke‐Vin Chang
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:137: 102496-102496 被引量:20
标识
DOI:10.1016/j.artmed.2023.102496
摘要

High-resolution ultrasound is an emerging tool for diagnosing carpal tunnel syndrome caused by the compression of the median nerve at the wrist. This systematic review and meta-analysis aimed to explore and summarize the performance of deep learning algorithms in the automatic sonographic assessment of the median nerve at the carpal tunnel level.PubMed, Medline, Embase, and Web of Science were searched from the earliest records to May 2022 for studies investigating the utility of deep neural networks in the evaluation of the median nerve in carpal tunnel syndrome. The quality of the included studies was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies. The outcome variables included precision, recall, accuracy, F-score, and Dice coefficient.In total, seven articles were included, comprising 373 participants. The deep learning and related algorithms comprised U-Net, phase-based probabilistic active contour, MaskTrack, ConvLSTM, DeepNerve, DeepSL, ResNet, Feature Pyramid Network, DeepLab, Mask R-CNN, region proposal network, and ROI Align. The pooled values of precision and recall were 0.917 (95 % confidence interval [CI], 0.873-0.961) and 0.940 (95 % CI, 0.892-0.988), respectively. The pooled accuracy and Dice coefficient were 0.924 (95 % CI, 0.840-1.008) and 0.898 (95 % CI, 0.872-0.923), respectively, whereas the summarized F-score was 0.904 (95 % CI, 0.871-0.937).The deep learning algorithm enables automated localization and segmentation of the median nerve at the carpal tunnel level in ultrasound imaging with acceptable accuracy and precision. Future research is expected to validate the performance of deep learning algorithms in detecting and segmenting the median nerve along its entire length as well as across datasets obtained from various ultrasound manufacturers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助生动幻莲采纳,获得10
刚刚
天真晓亦发布了新的文献求助30
1秒前
QAQ完成签到,获得积分10
2秒前
4秒前
4秒前
5秒前
阿拉波波完成签到,获得积分10
7秒前
星辰大海应助科研通管家采纳,获得30
9秒前
李健应助科研通管家采纳,获得10
9秒前
horizon应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
甜甜的莞发布了新的文献求助10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
鳗鱼如松完成签到,获得积分10
10秒前
10秒前
含糊的紫菜完成签到 ,获得积分10
12秒前
12秒前
12秒前
阿拉波波发布了新的文献求助10
12秒前
英姑应助天真晓亦采纳,获得10
12秒前
14秒前
xixi完成签到 ,获得积分10
14秒前
lightman发布了新的文献求助10
15秒前
一米八发布了新的文献求助10
15秒前
15秒前
misanisa发布了新的文献求助10
16秒前
憂xqc发布了新的文献求助10
17秒前
可乐发布了新的文献求助10
17秒前
17秒前
可爱的函函应助MailkMonk采纳,获得10
18秒前
QAQ关注了科研通微信公众号
19秒前
英俊的铭应助憂xqc采纳,获得10
20秒前
毕之发布了新的文献求助10
20秒前
apt发布了新的文献求助10
21秒前
N7完成签到,获得积分10
23秒前
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416345
求助须知:如何正确求助?哪些是违规求助? 3018261
关于积分的说明 8883436
捐赠科研通 2705647
什么是DOI,文献DOI怎么找? 1483740
科研通“疑难数据库(出版商)”最低求助积分说明 685789
邀请新用户注册赠送积分活动 680968