Integration of lanthanide MOFs/methylcellulose-based fluorescent sensor arrays and deep learning for fish freshness monitoring

镧系元素 荧光 三甲胺 二甲胺 食物腐败 化学 肉眼 传感器阵列 计算机科学 色谱法 渔业 生物 有机化学 生物化学 离子 机器学习 检出限 物理 细菌 遗传学 量子力学
作者
Xia Xu,Xiaoyi Wang,Yicheng Ding,Xuxia Zhou,Yuting Ding
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:265: 131011-131011 被引量:7
标识
DOI:10.1016/j.ijbiomac.2024.131011
摘要

Preserving fish meat poses a significant challenge due to its high protein and low fat content. This study introduces a novel approach that utilizes a common type of lanthanide metal-organic frameworks (Ln-MOFs), EuMOFs, in combination with 5-fluorescein isothiocyanate (FITC) and methylcellulose (MC) to develop fluorescent sensor arrays for real-time monitoring the freshness of fish meat. The EuMOF-FITC/MC fluorescence films were characterized with excellent fluorescence response, ideal morphology, good mechanical properties, and improved hydrophobicity. The efficacy of the fluorescence sensor array was evaluated by testing various concentrations of spoilage gases (such as ammonia, dimethylamine, and trimethylamine) within a 20-min timeframe using a smartphone-based camera obscura device. This sensor array enables the real-time monitoring of fish freshness, with the ability to preliminarily identify the freshness status of mackerel meat with the naked eye. Furthermore, the study employed four convolutional neural network (CNN) models to enhance the performance of freshness assessment, all of which achieved accuracy levels exceeding 93 %. Notably, the ResNext-101 model demonstrated a particularly high accuracy of 98.97 %. These results highlight the potential of the EuMOF-based fluorescence sensor array, in conjunction with the CNN model, as a reliable and accurate method for real-time monitoring the freshness of fish meat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助白桦林泪采纳,获得10
2秒前
天天快乐应助张文静采纳,获得10
2秒前
2秒前
ppp完成签到,获得积分10
2秒前
4秒前
小苏苏发布了新的文献求助10
4秒前
江沅发布了新的文献求助10
5秒前
在水一方应助微笑芷蕾采纳,获得10
6秒前
yydragen应助Margaery采纳,获得30
7秒前
8秒前
8秒前
10秒前
11秒前
lyx完成签到,获得积分10
11秒前
Listen完成签到,获得积分20
12秒前
12秒前
13秒前
jundading发布了新的文献求助10
14秒前
领导范儿应助Muhammad采纳,获得10
14秒前
16秒前
远航完成签到,获得积分10
16秒前
疯狂的寻绿完成签到,获得积分10
16秒前
18秒前
20秒前
22秒前
23秒前
恋雅颖月应助xu采纳,获得10
23秒前
24秒前
26秒前
26秒前
yeye发布了新的文献求助10
27秒前
研友_rLmNXn发布了新的文献求助10
27秒前
大个应助feng采纳,获得10
27秒前
雪无痕3074发布了新的文献求助10
27秒前
十七发布了新的文献求助10
27秒前
28秒前
29秒前
29秒前
Flute完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176