Corrosion and the formation of by-products resulting from parasitic side reactions, as well as random dendrite growth, pose significant challenges for aqueous zinc-ion batteries (AZIBs). In this study, phytate ammonium is introduced into the traditional dilute Zinc sulfate electrolyte as a multi-functional additive. Leveraging the inherent zincophilic nature of the phytic anion, a protective layer is formed on the surface of the zinc anode. This layer can effectively manipulate the deposition process, mitigate parasitic reactions, and reduce the accumulation of detrimental by-products. Additionally, the competitive deposition between dissociated ammonium ions and Zn2+ promotes uniform deposition, thereby alleviating dendrite growth. Consequently, the modified electrolyte with a lower volume addition exhibits superior performance. The zinc symmetric battery demonstrates much more reversible plating/stripping, sustaining over 2000 h at 5 mA cm−2 and 1 mA h cm−2. A high average deposition/stripping efficiency of 99.83 % is achieved, indicating the significant boosting effect and practical potential of our strategy for high-performance aqueous zinc-ion batteries.