已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Game theory-based mandatory lane change model in intelligent connected vehicles environment

基线(sea) 车头时距 智能交通系统 驾驶模拟器 计算机科学 过程(计算) 模拟 随机博弈 更安全的 工程类 实时计算 人机交互 计算机安全 运输工程 海洋学 操作系统 地质学 数学 数理经济学
作者
Yugang Wang,Nengchao Lyu,Jianghui Wen
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:132: 146-165 被引量:1
标识
DOI:10.1016/j.apm.2024.04.047
摘要

In the environment of intelligent connected vehicles, drivers are capable of making wiser and safer decisions. However, the interaction between drivers and vehicle systems has undergone changes in the Intelligent Connected Vehicles environment, leading to a decrease in the applicability of existing microscopic driving models, such as the mandatory lane change model, which requires reevaluation or improvement. Therefore, to investigate the influence of different intelligent connected vehicles environments on the microscopic mandatory lane-changing model, this study developed three interaction systems to characterize different intelligent connected vehicles environments: the baseline, warning group, and guidance group. The Baseline provides basic information, the warning group adds icons of preceding vehicles and real-time headway information, while the guidance group further includes speed and voice guidance functions. The baseline describes the traditional environment, while the other two groups describe the intelligent connected vehicles environment. Using a self-developed intelligent connected vehicle testing platform, we conducted driving simulation experiments with 43 participants at the interchange merging area of a highway. This study, grounded in game theory, establishes function models for participants, strategies, and payoff functions in the mandatory lane-changing process. Utilizing data from driving simulation experiments, the parameters of the dual-layered planning model are calibrated. Evaluation of the constructed model is conducted through confusion matrices and lane-changing spatiotemporal characteristic indicators. The results demonstrate satisfactory predictive performance of the baseline group model, warning group model, and guidance group model across different intelligent connected vehicles environments. Specifically, compared to existing literature, the baseline group model exhibits improvements of 7% and 2% respectively in overall lane-changing detection accuracy by drivers. The warning group model shows improvements of 2.9% and 1.7%, while the guidance group model exhibits improvements of 5.1% and 4.3%. Additionally, the baseline group model reduces the mean absolute error in predicting different game strategies by 16.7% and 5.6% respectively compared to existing literature. Concerning lane-changing position prediction, the warning and guidance group models demonstrate minimal errors, whereas the baseline group model exhibits good consistency in predicting lane-changing duration. Furthermore, both the warning and guidance group models show some delay in predicting lane-changing duration. While intelligent connected vehicles environments significantly influence the prediction of lane-changing positions, they do not significantly affect the prediction of lane-changing duration. However, game strategies significantly impact the prediction of lane-changing duration but do not significantly affect the prediction of lane-changing positions. The study findings offer valuable insights into micro lane-changing behaviors of drivers in intelligent connected vehicles environments, bearing crucial significance for the in-depth investigation of real-time control and guidance strategies for vehicles in merge areas of highways under intelligent connected vehicles conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严明完成签到,获得积分0
1秒前
严明完成签到,获得积分0
1秒前
优秀的雨筠完成签到 ,获得积分10
1秒前
蓝莓小蛋糕完成签到 ,获得积分10
2秒前
桐炫完成签到,获得积分10
2秒前
旺旺雪饼发布了新的文献求助10
2秒前
米饭儿完成签到 ,获得积分10
3秒前
义气幼珊完成签到 ,获得积分10
4秒前
呵呵完成签到 ,获得积分10
4秒前
4秒前
春山完成签到 ,获得积分10
4秒前
5秒前
周航应助念卿采纳,获得10
5秒前
pinklay完成签到 ,获得积分10
6秒前
8秒前
WEILAI完成签到 ,获得积分10
8秒前
9秒前
9秒前
Akim应助早睡早起采纳,获得10
9秒前
9秒前
9秒前
云一朵完成签到 ,获得积分10
10秒前
Jasper应助细腻的冷卉采纳,获得30
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
大模型应助科研通管家采纳,获得30
10秒前
poorzz发布了新的文献求助10
11秒前
12秒前
Liz完成签到,获得积分10
12秒前
所所应助112采纳,获得10
13秒前
13秒前
水晶鞋完成签到 ,获得积分10
14秒前
家稚晴发布了新的文献求助10
15秒前
laifeihong发布了新的文献求助10
15秒前
碧蓝的以云完成签到 ,获得积分10
17秒前
17秒前
陈琪发布了新的文献求助10
17秒前
Dai发布了新的文献求助10
18秒前
18秒前
天天快乐应助旺旺雪饼采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722957
求助须知:如何正确求助?哪些是违规求助? 5273976
关于积分的说明 15298034
捐赠科研通 4871748
什么是DOI,文献DOI怎么找? 2616169
邀请新用户注册赠送积分活动 1566020
关于科研通互助平台的介绍 1522944