Game theory-based mandatory lane change model in intelligent connected vehicles environment

基线(sea) 车头时距 智能交通系统 驾驶模拟器 计算机科学 过程(计算) 模拟 随机博弈 更安全的 工程类 实时计算 人机交互 计算机安全 运输工程 海洋学 操作系统 地质学 数学 数理经济学
作者
Yugang Wang,Nengchao Lyu,Jianghui Wen
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:132: 146-165 被引量:1
标识
DOI:10.1016/j.apm.2024.04.047
摘要

In the environment of intelligent connected vehicles, drivers are capable of making wiser and safer decisions. However, the interaction between drivers and vehicle systems has undergone changes in the Intelligent Connected Vehicles environment, leading to a decrease in the applicability of existing microscopic driving models, such as the mandatory lane change model, which requires reevaluation or improvement. Therefore, to investigate the influence of different intelligent connected vehicles environments on the microscopic mandatory lane-changing model, this study developed three interaction systems to characterize different intelligent connected vehicles environments: the baseline, warning group, and guidance group. The Baseline provides basic information, the warning group adds icons of preceding vehicles and real-time headway information, while the guidance group further includes speed and voice guidance functions. The baseline describes the traditional environment, while the other two groups describe the intelligent connected vehicles environment. Using a self-developed intelligent connected vehicle testing platform, we conducted driving simulation experiments with 43 participants at the interchange merging area of a highway. This study, grounded in game theory, establishes function models for participants, strategies, and payoff functions in the mandatory lane-changing process. Utilizing data from driving simulation experiments, the parameters of the dual-layered planning model are calibrated. Evaluation of the constructed model is conducted through confusion matrices and lane-changing spatiotemporal characteristic indicators. The results demonstrate satisfactory predictive performance of the baseline group model, warning group model, and guidance group model across different intelligent connected vehicles environments. Specifically, compared to existing literature, the baseline group model exhibits improvements of 7% and 2% respectively in overall lane-changing detection accuracy by drivers. The warning group model shows improvements of 2.9% and 1.7%, while the guidance group model exhibits improvements of 5.1% and 4.3%. Additionally, the baseline group model reduces the mean absolute error in predicting different game strategies by 16.7% and 5.6% respectively compared to existing literature. Concerning lane-changing position prediction, the warning and guidance group models demonstrate minimal errors, whereas the baseline group model exhibits good consistency in predicting lane-changing duration. Furthermore, both the warning and guidance group models show some delay in predicting lane-changing duration. While intelligent connected vehicles environments significantly influence the prediction of lane-changing positions, they do not significantly affect the prediction of lane-changing duration. However, game strategies significantly impact the prediction of lane-changing duration but do not significantly affect the prediction of lane-changing positions. The study findings offer valuable insights into micro lane-changing behaviors of drivers in intelligent connected vehicles environments, bearing crucial significance for the in-depth investigation of real-time control and guidance strategies for vehicles in merge areas of highways under intelligent connected vehicles conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙傲天发布了新的社区帖子
刚刚
鲁万仇完成签到,获得积分10
刚刚
1秒前
YYYYYY完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
GRQ完成签到 ,获得积分10
3秒前
小鱼快游发布了新的文献求助30
4秒前
4秒前
5秒前
轻轻完成签到 ,获得积分10
5秒前
zhikangzhang完成签到,获得积分10
6秒前
7秒前
冷酷夏真完成签到 ,获得积分10
7秒前
lzc完成签到,获得积分10
7秒前
jinyuqian完成签到,获得积分10
8秒前
虚心青梦发布了新的文献求助10
9秒前
科研通AI6应助jChen采纳,获得10
9秒前
sunshine发布了新的文献求助10
9秒前
故意的秋烟完成签到,获得积分10
10秒前
Literaturecome完成签到,获得积分10
11秒前
12秒前
碧蓝捕发布了新的文献求助30
12秒前
qianxie完成签到,获得积分10
12秒前
月蚀六花发布了新的文献求助10
14秒前
1526完成签到,获得积分10
14秒前
15秒前
17秒前
17秒前
17秒前
小药童应助小熊采纳,获得10
18秒前
18秒前
科研通AI6应助fei采纳,获得10
18秒前
18秒前
甘草三七完成签到,获得积分10
19秒前
19秒前
poppy发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
等待醉柳完成签到,获得积分10
21秒前
mango完成签到,获得积分10
22秒前
xu1发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478316
求助须知:如何正确求助?哪些是违规求助? 4580011
关于积分的说明 14371936
捐赠科研通 4508322
什么是DOI,文献DOI怎么找? 2470668
邀请新用户注册赠送积分活动 1457388
关于科研通互助平台的介绍 1431329