Optimizing Ionomer Coverage in Solid Carbon-Supported Catalyst toward High Performance for Proton Exchange Membrane Fuel Cells

离聚物 质子交换膜燃料电池 催化作用 材料科学 化学工程 碳纤维 质子 化学 复合材料 工程类 物理 有机化学 复合数 共聚物 聚合物 生物化学 量子力学
作者
Dianding Sun,Zhang Wang,Jin Meng,Jiafang Liu,Xian Zhang,Shengbo Zhang,Haimin Zhang
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:7 (9): 4132-4140 被引量:2
标识
DOI:10.1021/acsaem.4c00463
摘要

The three-phase interface comprising the carbon support, ionomer, and Pt nanoparticles was the main place where the cathode oxygen reduction reaction (ORR) occurred, determining the performance of the proton exchange membrane fuel cell (PEMFC). However, the unresolved transport issues taking place in the three-phase interface always bring about a much lower PEMFC performance and result in a lower utilization rate of Pt particles. In this study, we fabricated three different oxygen (O), nitrogen (N), and sulfur (S) surface-functionalized solid carbon catalysts (Pt/X–C, X = S, O, N) and investigated the ionomer distribution around the catalyst on the proton transfer resistances. Rotating disk electrode results demonstrated that the intrinsic activity of the surface-functionalization catalysts for the ORR was similar. However, as assembled as a membrane electrode assembly, the voltage of Pt/N–C was 0.522 V at 2000 mA cm–2 and 20% relative humidity (RH), which significantly outperformed those of Pt/C, Pt/S–C, and Pt/O–C, as 0.410, 0.467, and 0.479 V. Theoretical calculations and the dry proton accessibility results revealed that the N-functionalization catalyst can effectively improve the distribution of the ionomer on the catalyst surface and the utilization rate of the catalyst. Finally, the durability of the as-prepared catalysts was further evaluated via an accelerated durability test, and the voltage loss of Pt/N–C was only 21.7 mV at 2000 mA cm–2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
a方舟发布了新的文献求助10
1秒前
寒冷书竹发布了新的文献求助10
1秒前
1秒前
hhh发布了新的文献求助10
1秒前
顾矜应助富婆嘉嘉子采纳,获得10
1秒前
1秒前
1秒前
2秒前
江风海韵完成签到,获得积分10
2秒前
火星上的从雪完成签到,获得积分10
2秒前
在水一方应助kai采纳,获得10
2秒前
打打应助留胡子的青柏采纳,获得10
3秒前
3秒前
zhanghw发布了新的文献求助10
3秒前
Frank完成签到,获得积分10
3秒前
桐桐应助小喵采纳,获得10
3秒前
香蕉觅云应助执笔客采纳,获得10
3秒前
light完成签到 ,获得积分10
3秒前
你仔细听完成签到,获得积分10
4秒前
4秒前
Sailzyf完成签到,获得积分10
4秒前
抓恐龙发布了新的文献求助10
4秒前
4秒前
汉堡包应助言小采纳,获得10
5秒前
Chen发布了新的文献求助10
5秒前
lql233完成签到,获得积分20
5秒前
雪白问兰完成签到 ,获得积分10
5秒前
5秒前
魅力蜗牛完成签到,获得积分10
5秒前
5秒前
upup小李完成签到 ,获得积分10
6秒前
手帕很忙完成签到,获得积分10
6秒前
害羞含雁发布了新的文献求助10
6秒前
6秒前
zp完成签到 ,获得积分10
6秒前
ren发布了新的文献求助10
7秒前
Lucas应助踏实的小海豚采纳,获得10
7秒前
Lucas应助2go采纳,获得10
7秒前
Jasper应助日月山河永在采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672