Generative adversarial network-based synthesis of contrast-enhanced MR images from precontrast images for predicting histological characteristics in breast cancer

对比度(视觉) 人工智能 计算机科学 磁共振成像 接收机工作特性 卷积神经网络 乳腺癌 模式识别(心理学) 放射科 癌症 医学 内科学
作者
Ming Fan,Xuan Cao,Fuqing Lü,Sangma Xie,Zhou Yu,Yuanlin Chen,Zhong Lü,Lihua Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (9): 095002-095002 被引量:1
标识
DOI:10.1088/1361-6560/ad3889
摘要

Abstract Objective . Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a sensitive tool for assessing breast cancer by analyzing tumor blood flow, but it requires gadolinium-based contrast agents, which carry risks such as brain retention and astrocyte migration. Contrast-free MRI is thus preferable for patients with renal impairment or who are pregnant. This study aimed to investigate the feasibility of generating contrast-enhanced MR images from precontrast images and to evaluate the potential use of synthetic images in diagnosing breast cancer. Approach . This retrospective study included 322 women with invasive breast cancer who underwent preoperative DCE-MRI. A generative adversarial network (GAN) based postcontrast image synthesis (GANPIS) model with perceptual loss was proposed to generate contrast-enhanced MR images from precontrast images. The quality of the synthesized images was evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The diagnostic performance of the generated images was assessed using a convolutional neural network to predict Ki-67, luminal A and histological grade with the area under the receiver operating characteristic curve (AUC). The patients were divided into training ( n = 200), validation ( n = 60), and testing sets ( n = 62). Main results . Quantitative analysis revealed strong agreement between the generated and real postcontrast images in the test set, with PSNR and SSIM values of 36.210 ± 2.670 and 0.988 ± 0.006, respectively. The generated postcontrast images achieved AUCs of 0.918 ± 0.018, 0.842 ± 0.028 and 0.815 ± 0.019 for predicting the Ki-67 expression level, histological grade, and luminal A subtype, respectively. These results showed a significant improvement compared to the use of precontrast images alone, which achieved AUCs of 0.764 ± 0.031, 0.741 ± 0.035, and 0.797 ± 0.021, respectively. Significance . This study proposed a GAN-based MR image synthesis method for breast cancer that aims to generate postcontrast images from precontrast images, allowing the use of contrast-free images to simulate kinetic features for improved diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wwl发布了新的文献求助10
1秒前
小蘑菇应助changyee采纳,获得10
1秒前
1秒前
郜幼枫发布了新的文献求助10
2秒前
灵巧夜天发布了新的文献求助10
2秒前
toxin发布了新的文献求助10
2秒前
summer完成签到,获得积分10
2秒前
昔年完成签到 ,获得积分10
2秒前
lhp发布了新的文献求助10
2秒前
英俊的铭应助桃博采纳,获得10
2秒前
2秒前
3秒前
顺利如冰完成签到,获得积分10
3秒前
spk关闭了spk文献求助
4秒前
4秒前
Mr咸蛋黄完成签到,获得积分10
4秒前
4秒前
4秒前
Ivychao发布了新的文献求助10
4秒前
裴裴裴发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
没有蛀牙发布了新的文献求助10
6秒前
7秒前
7秒前
微尘之末发布了新的文献求助10
7秒前
xiaozheng发布了新的文献求助10
8秒前
积极晓绿发布了新的文献求助10
8秒前
暴躁的幼荷完成签到 ,获得积分10
8秒前
小蘑菇应助luo采纳,获得10
9秒前
木易发布了新的文献求助10
9秒前
风中作画发布了新的文献求助10
9秒前
漫漫发布了新的文献求助10
9秒前
ding应助zhzhzh采纳,获得10
10秒前
隐形曼青应助llzuo采纳,获得10
10秒前
Ivychao完成签到,获得积分10
10秒前
maybe发布了新的文献求助10
11秒前
shiyu发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782