结晶度
混溶性
三元运算
活动层
有机太阳能电池
材料科学
分子
小分子
三元数制
化学工程
纳米技术
图层(电子)
聚合物
有机化学
化学
复合材料
计算机科学
工程类
生物化学
程序设计语言
薄膜晶体管
作者
Yixuan Xu,Chunyan Liu,Wentao Zou,Nailiang Qiu,Xinyue Jiang,Huajun Xu,Ping Cai,Renqiang Yang,Xunchang Wang,Can Shen,Liaohui Ni,Longlong Geng,Yuanyuan Kan,Yanna Sun,Ke Gao
出处
期刊:ACS materials letters
[American Chemical Society]
日期:2024-04-11
卷期号:6 (5): 1920-1928
被引量:3
标识
DOI:10.1021/acsmaterialslett.4c00356
摘要
All-small-molecule OSCs (ASM-OSCs) have garnered significant attention for their inherent advantages, including low batch-to-batch variations and well-defined molecular structures. However, their power conversion efficiencies (PCEs) are relatively inferior, mainly imputed to the challenges in controlling active layer morphologies. Herein, FSBTSeHR, a small-molecule donor (SMD) was added to the B1:BTP-eC9 blend. FSBTSeHR exhibits high crystallinity, improving the molecular packing in the ternary blend. Furthermore, FSBTSeHR has better miscibility with the host donor B1 than with BTP-eC9, leading to a proper nanoscale phase separation morphology in the ternary active layer. The optimized active layer morphology facilitates charge transport and extraction while suppressing charge recombination in ternary devices. Transient absorption spectroscopy (TAS) reveals a rapid exciton dissociation and diffusion process in the blend of B1:FSBTSeHR:BTP-eC9, which is consistent with its improved morphology. Thus, the ternary device obtained a remarkable PCE (17.04%), which is one of the highest values in ASM-OSCs to date.
科研通智能强力驱动
Strongly Powered by AbleSci AI