RISK ASSESSMENT OF SUBWAY STATION FIRE BY USING A BAYESIAN NETWORK-BASED SCENARIO EVOLUTION MODEL

贝叶斯网络 地铁站 贝叶斯概率 环境科学 计算机科学 工程类 运输工程 人工智能
作者
Xuewei Li,Jingfeng Yuan,Limao Zhang,Dujuan Yang
出处
期刊:Journal of Civil Engineering and Management [Taylor & Francis]
卷期号:30 (3): 279-294
标识
DOI:10.3846/jcem.2024.20846
摘要

Subway station fires frequently result in massive casualties, economic losses and even social panic due to the massive passenger flow, semiconfined space and limited conditions for escape and smoke emissions. The combination of different states of fire hazard factors increases the uncertainty and complexity of the evolution path of subway station fires and causes difficulty in assessing fire risk. Traditional methods cannot describe the development process of subway station fires, and thus, cannot assess fire risk under different fire scenarios. To realise scenario-based fire risk assessment, the elements that correspond to each scenario state during fire development in subway stations are identified in this study to explore the intrinsic driving force of fire evolution. Accordingly, a fire scenario evolution model of subway stations is constructed. Then, a Bayesian network is adopted to construct a scenario evolution probability calculation model for calculating the occurrence probability of each scenario state during subway station fire development and identifying critical scenario elements that promote fire evolution. Xi’an subway station system is used as a case to illustrate the application of Bayesian network-based scenario evolution model, providing a practical management tool for fire safety managers. The method adopted in this study enables managers to predict fire risk in each scenario and understand the evolution path of subway station fire, supporting the establishment of fire response strategies based on “scenario–response” planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raki完成签到,获得积分10
1秒前
haly完成签到 ,获得积分10
3秒前
demoestar完成签到 ,获得积分10
3秒前
hero_ljw完成签到,获得积分10
3秒前
田様应助梅雨季来信采纳,获得10
3秒前
Maria完成签到,获得积分10
6秒前
jj完成签到,获得积分10
6秒前
华仔应助无限的寄真采纳,获得10
6秒前
学呀学完成签到 ,获得积分10
6秒前
NexusExplorer应助QQ采纳,获得10
6秒前
研友_VZG7GZ应助沈归尘采纳,获得10
6秒前
genhao1完成签到,获得积分10
7秒前
雨纷纷完成签到,获得积分10
7秒前
adagio完成签到,获得积分10
8秒前
9秒前
宇文书翠完成签到,获得积分10
10秒前
Emily完成签到,获得积分10
10秒前
铁甲小杨完成签到,获得积分10
11秒前
承乐发布了新的文献求助10
12秒前
优雅友蕊完成签到,获得积分10
12秒前
yes完成签到 ,获得积分10
12秒前
柔弱的海莲完成签到 ,获得积分10
13秒前
ZeSheng完成签到,获得积分10
14秒前
赵念婉完成签到,获得积分10
15秒前
传奇3应助向阳采纳,获得10
15秒前
共享精神应助jovrtic采纳,获得10
16秒前
17秒前
熙梓日记完成签到,获得积分10
18秒前
葛藟萦藤完成签到,获得积分10
19秒前
碧蓝可乐完成签到,获得积分10
20秒前
沈归尘发布了新的文献求助10
22秒前
源来是洲董完成签到,获得积分10
22秒前
23秒前
墨瞳完成签到,获得积分10
23秒前
向阳完成签到,获得积分10
26秒前
锦鲤护体完成签到 ,获得积分10
26秒前
独特的凝云完成签到 ,获得积分10
27秒前
猫的毛完成签到 ,获得积分10
27秒前
jovrtic发布了新的文献求助10
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495348
关于积分的说明 11076451
捐赠科研通 3225877
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867596
科研通“疑难数据库(出版商)”最低求助积分说明 800839