Prediction of soil organic carbon in black soil based on a synergistic scheme from hyperspectral data: Combining fractional-order derivatives and three-dimensional spectral indices

高光谱成像 土壤碳 方案(数学) 土壤科学 环境科学 订单(交换) 总有机碳 炭黑 数学 应用数学 计算机科学 环境化学 化学 人工智能 土壤水分 数学分析 天然橡胶 有机化学 财务 经济
作者
Jing Geng,Junwei Lv,Jie Pei,Chunhua Liao,Qiuyuan Tan,Tianxing Wang,Huajun Fang,Li Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108905-108905 被引量:6
标识
DOI:10.1016/j.compag.2024.108905
摘要

Monitoring soil organic carbon (SOC) content is crucial for climate change mitigation and sustaining ecological balance. Despite the unparalleled advantages of hyperspectral data in capturing nuanced variations in soil properties through its high spectral resolution, effectively extracting useful features from numerous bands via spectral processing techniques remains a formidable challenge. This study proposes an integrated approach combining fractional-order derivative (FOD) technique and optimal band combination algorithm using ZY1-02D satellite hyperspectral data to estimate SOC in Northeast China's Black soil region. Three modeling strategies were compared: (1) FOD-transformed reflectance (FOD spectra), (2) FOD spectra with traditional 2D spectral indices (FOD + 2D SI), and (3) FOD spectra with new 3D spectral indices (FOD + 3D SI). These strategies were implemented using the random forest model with the aim of the optimal SOC prediction. Results showed that the application of FOD technique for spectral transformation effectively addressed the challenges posed by overlapping peaks and baseline drift inherent in the original spectral reflectance. Additionally, FOD transformation enhanced subtle soil spectral features and yielded more pronounced spectral variations with increasing fractional order, as compared to the original spectral data and conventional integer-order derivatives (i.e., first and second-order derivatives). However, as the FOD order continued to increase beyond 1.4, the spectral curve exhibited amplified noise and distortion, thereby adversely impacting subsequent model development. The 3D spectral indices correlate more robustly with SOC than 2D indices. The model that combines 0.6-order FOD and 3D spectral indices achieved the best accuracy (R2 = 0.66, RMSE = 2.99 g/kg and MAE = 2.42 g/kg), significantly outperforming the models built by 0.6-order FOD spectra (R2 = 0.48, RMSE = 3.65 g kg−1, and MAE = 2.93 g kg−1) and 0.8-order FOD + 2D SI modeling strategy (R2 = 0.55, RMSE = 3.54 g kg−1, and MAE = 2.85 g kg−1). These findings indicated that FOD and 3D spectral indices exhibit superior synergistic performance in SOC prediction, demonstrating their feasibility and providing valuable insights for large-scale soil property prediction and mapping using satellite hyperspectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助gengfu采纳,获得10
1秒前
1秒前
英俊的铭应助Han采纳,获得10
1秒前
遥远的尧应助感动的听荷采纳,获得10
1秒前
肥仔发布了新的文献求助10
1秒前
2秒前
Singularity应助kimi_saigou采纳,获得10
3秒前
3秒前
orixero应助嗝嗝采纳,获得10
4秒前
云瑾应助溪鱼采纳,获得20
4秒前
5秒前
6秒前
6秒前
6秒前
邬从云发布了新的文献求助20
7秒前
aqw完成签到,获得积分20
7秒前
兜兜发布了新的文献求助10
7秒前
divedown发布了新的文献求助10
7秒前
9秒前
tenfarmers完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
11秒前
pluto应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
小海完成签到,获得积分10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
orixero应助科研通管家采纳,获得10
11秒前
不安青牛应助科研通管家采纳,获得10
11秒前
苏书白应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
不安青牛应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943