介电谱
复合数
循环伏安法
电解质
导电聚合物
纳米颗粒
作者
Fangsheng Wu,Xiaohong Wang,Wanru Zheng,Haiwen Gao,Hao Chen,Cunwang Ge
标识
DOI:10.1016/j.electacta.2017.05.165
摘要
Abstract Bi2MoO6/Polyaniline (PANI) hybrid nanocomposite with enhanced specific capacity and rate performance was synthesized by compositing Bi2MoO6 with the PANI layer using sodium lignosulphonate (SLS) as a dopant through a simple chemical polymerization. The Bi2MoO6/PANI (BMP) nanocomposite affords a large reaction surface area, an excellent structural stability, a large number of active sites, good strain accommodation, and fast electron and ion transportation compared with pure Bi2MoO6, which all are beneficial for improving the electrochemical performance. Hence, the Bi2MoO6/PANI electrode with 0.15 g Bi2MoO6 (BMP-2) shows a high specific capacitance of 826 F g−1 at a current density of 1 A g−1 and capacitance retention of 75.5% after 3000 cycles at a current density of 5 A g−1, which is higher than pristine Bi2MoO6 and other electrodes. In addition, an all-solid-state asymmetric supercapacitor (ASC) fabricated by the BMP-2 electrode and activated carbon (AC) displays a high specific capacitance of 90.0 F g−1 and a high energy density of 31.9 Wh kg−1. Moreover, the BMP-2//AC ASC device exhibits high cycle stability, and 86.5% of its initial capacitance is retained after continuous 6000 cycles. Therefore, these results will promote a promising potential application of the Bi2MoO6/PANI nanocomposite for use as an effective electrode material in supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI