GAN-based survival prediction model from CT images of patients with idiopathic pulmonary fibrosis

鉴别器 一致性 特发性肺纤维化 医学 自举(财务) 人工智能 放射科 模式识别(心理学) 内科学 心脏病学 计算机科学 数学 电信 探测器 计量经济学
作者
Tomoki Uemuraa,Chinatsu Watari,Janne J. Näppi,Tetsuo Hironaka,Hyoungseop Kim,Hiroyuki Yoshida
标识
DOI:10.1117/12.2551369
摘要

We developed a novel survival prediction model for images, called pix2surv, based on a conditional generative adversarial network (cGAN), and evaluated its performance based on chest CT images of patients with idiopathic pulmonary fibrosis (IPF). The architecture of the pix2surv model has a time-generator network that consists of an encoding convolutional network, a fully connected prediction network, and a discriminator network. The fully connected prediction network is trained to generate survival-time images from the chest CT images of each patient. The discriminator network is a patchbased convolutional network that is trained to differentiate the “fake pair” of a chest CT image and a generated survivaltime image from the “true pair” of an input CT image and the observed survival-time image of a patient. For evaluation, we retrospectively collected 75 IPF patients with high-resolution chest CT and pulmonary function tests. The survival predictions of the pix2surv model on these patients were compared with those of an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by use of a two-sided t-test with bootstrapping. Concordance index (C-index) and relative absolute error (RAE) were used as measures of the prediction performance. Preliminary results showed that the survival prediction by the pix2surv model yielded more than 15% higher C-index value and more than 10% lower RAE values than those of the GAP index. The improvement in survival prediction by the pix2surv model was statistically significant (P < 0.0001). Also, the separation between the survival curves for the low- and high-risk groups was larger with pix2surv than that of the GAP index. These results show that the pix2surv model outperforms the GAP index in the prediction of the survival time and risk stratification of patients with IPF, indicating that the pix2surv model can be an effective predictor of the overall survival of patients with IPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝肯尼发布了新的文献求助10
刚刚
sqk应助小巧雪碧采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
ztll发布了新的文献求助50
3秒前
_呱_完成签到,获得积分10
4秒前
4秒前
fool发布了新的文献求助10
5秒前
5秒前
SciGPT应助刻苦不弱采纳,获得10
10秒前
粉粉银耳汤完成签到,获得积分10
11秒前
12秒前
疯狂的大山完成签到,获得积分10
12秒前
ding应助tkdzjr12345采纳,获得10
13秒前
Teng完成签到 ,获得积分10
13秒前
称心太阳发布了新的文献求助10
14秒前
16秒前
wph完成签到,获得积分10
18秒前
123发布了新的文献求助20
18秒前
超帅的薯片完成签到,获得积分10
19秒前
19秒前
情怀应助火之高兴采纳,获得10
19秒前
学医不要停完成签到,获得积分10
19秒前
sunshine应助舒心的平松采纳,获得10
20秒前
tkdzjr12345发布了新的文献求助10
25秒前
sunshine应助妮儿采纳,获得10
25秒前
优雅的诺言完成签到,获得积分10
28秒前
涂月三完成签到 ,获得积分10
28秒前
天天快乐应助一只笨笨鱼采纳,获得10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352973
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682043
捐赠科研通 2658903
什么是DOI,文献DOI怎么找? 1455990
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884