GAN-based survival prediction model from CT images of patients with idiopathic pulmonary fibrosis

鉴别器 一致性 特发性肺纤维化 医学 自举(财务) 人工智能 放射科 模式识别(心理学) 内科学 心脏病学 计算机科学 数学 电信 探测器 计量经济学
作者
Tomoki Uemuraa,Chinatsu Watari,Janne J. Näppi,Tetsuo Hironaka,Hyoungseop Kim,Hiroyuki Yoshida
标识
DOI:10.1117/12.2551369
摘要

We developed a novel survival prediction model for images, called pix2surv, based on a conditional generative adversarial network (cGAN), and evaluated its performance based on chest CT images of patients with idiopathic pulmonary fibrosis (IPF). The architecture of the pix2surv model has a time-generator network that consists of an encoding convolutional network, a fully connected prediction network, and a discriminator network. The fully connected prediction network is trained to generate survival-time images from the chest CT images of each patient. The discriminator network is a patchbased convolutional network that is trained to differentiate the “fake pair” of a chest CT image and a generated survivaltime image from the “true pair” of an input CT image and the observed survival-time image of a patient. For evaluation, we retrospectively collected 75 IPF patients with high-resolution chest CT and pulmonary function tests. The survival predictions of the pix2surv model on these patients were compared with those of an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by use of a two-sided t-test with bootstrapping. Concordance index (C-index) and relative absolute error (RAE) were used as measures of the prediction performance. Preliminary results showed that the survival prediction by the pix2surv model yielded more than 15% higher C-index value and more than 10% lower RAE values than those of the GAP index. The improvement in survival prediction by the pix2surv model was statistically significant (P < 0.0001). Also, the separation between the survival curves for the low- and high-risk groups was larger with pix2surv than that of the GAP index. These results show that the pix2surv model outperforms the GAP index in the prediction of the survival time and risk stratification of patients with IPF, indicating that the pix2surv model can be an effective predictor of the overall survival of patients with IPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助梦溪采纳,获得10
刚刚
1秒前
难过千易发布了新的文献求助10
1秒前
1秒前
尊敬飞鸟完成签到 ,获得积分10
2秒前
一支布洛芬完成签到,获得积分20
2秒前
3秒前
Phoenix Hu发布了新的文献求助10
4秒前
4秒前
长乐完成签到,获得积分10
4秒前
5秒前
明矾发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
lll完成签到,获得积分10
8秒前
8秒前
9秒前
整齐的忆彤完成签到,获得积分10
10秒前
伊斯坦布尔的鱼应助叁肆采纳,获得10
12秒前
akjsi发布了新的文献求助10
12秒前
毛毛发布了新的文献求助10
12秒前
13秒前
13秒前
顺心的笑翠完成签到 ,获得积分10
14秒前
14秒前
科研通AI2S应助zy采纳,获得10
15秒前
思源应助晚来天欲雪采纳,获得10
15秒前
16秒前
思源应助酷酷的水儿采纳,获得10
17秒前
桂桂发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
乐乐应助坦率的大神采纳,获得10
23秒前
drtianyunhong完成签到,获得积分10
24秒前
可爱的函函应助毛毛采纳,获得10
24秒前
查理完成签到,获得积分10
26秒前
27秒前
28秒前
FashionBoy应助多肉葡萄采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202970
捐赠科研通 3256899
什么是DOI,文献DOI怎么找? 1798535
邀请新用户注册赠送积分活动 877725
科研通“疑难数据库(出版商)”最低求助积分说明 806516