GAN-based survival prediction model from CT images of patients with idiopathic pulmonary fibrosis

鉴别器 一致性 特发性肺纤维化 医学 自举(财务) 人工智能 放射科 模式识别(心理学) 内科学 心脏病学 计算机科学 数学 电信 探测器 计量经济学
作者
Tomoki Uemuraa,Chinatsu Watari,Janne J. Näppi,Tetsuo Hironaka,Hyoungseop Kim,Hiroyuki Yoshida
标识
DOI:10.1117/12.2551369
摘要

We developed a novel survival prediction model for images, called pix2surv, based on a conditional generative adversarial network (cGAN), and evaluated its performance based on chest CT images of patients with idiopathic pulmonary fibrosis (IPF). The architecture of the pix2surv model has a time-generator network that consists of an encoding convolutional network, a fully connected prediction network, and a discriminator network. The fully connected prediction network is trained to generate survival-time images from the chest CT images of each patient. The discriminator network is a patchbased convolutional network that is trained to differentiate the “fake pair” of a chest CT image and a generated survivaltime image from the “true pair” of an input CT image and the observed survival-time image of a patient. For evaluation, we retrospectively collected 75 IPF patients with high-resolution chest CT and pulmonary function tests. The survival predictions of the pix2surv model on these patients were compared with those of an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by use of a two-sided t-test with bootstrapping. Concordance index (C-index) and relative absolute error (RAE) were used as measures of the prediction performance. Preliminary results showed that the survival prediction by the pix2surv model yielded more than 15% higher C-index value and more than 10% lower RAE values than those of the GAP index. The improvement in survival prediction by the pix2surv model was statistically significant (P < 0.0001). Also, the separation between the survival curves for the low- and high-risk groups was larger with pix2surv than that of the GAP index. These results show that the pix2surv model outperforms the GAP index in the prediction of the survival time and risk stratification of patients with IPF, indicating that the pix2surv model can be an effective predictor of the overall survival of patients with IPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助白秋秋采纳,获得10
刚刚
微笑冰旋给微笑冰旋的求助进行了留言
刚刚
刚刚
刚刚
NexusExplorer应助duoduo采纳,获得10
1秒前
3秒前
烟花应助程院采纳,获得10
4秒前
向北发布了新的文献求助10
4秒前
loong完成签到,获得积分10
4秒前
马彦杰发布了新的文献求助10
4秒前
5秒前
5秒前
11完成签到,获得积分10
5秒前
我爱化学完成签到,获得积分10
7秒前
7秒前
8秒前
SYLH应助EZ采纳,获得10
8秒前
9秒前
科研通AI5应助科里斯皮尔采纳,获得10
10秒前
10秒前
12秒前
优秀静珊发布了新的文献求助10
12秒前
12秒前
123发布了新的文献求助10
14秒前
ChatGPT发布了新的文献求助10
14秒前
zz发布了新的文献求助10
15秒前
瘦瘦妖妖发布了新的文献求助10
15秒前
海纳百川完成签到,获得积分10
18秒前
支支发布了新的文献求助10
19秒前
善学以致用应助huayi采纳,获得10
20秒前
21秒前
21秒前
21秒前
赘婿应助Huang采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
优秀静珊完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
Hello应助扎心采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971732
求助须知:如何正确求助?哪些是违规求助? 3516385
关于积分的说明 11182415
捐赠科研通 3251598
什么是DOI,文献DOI怎么找? 1795960
邀请新用户注册赠送积分活动 876171
科研通“疑难数据库(出版商)”最低求助积分说明 805340