亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GAN-based survival prediction model from CT images of patients with idiopathic pulmonary fibrosis

鉴别器 一致性 特发性肺纤维化 医学 自举(财务) 人工智能 放射科 模式识别(心理学) 内科学 心脏病学 计算机科学 数学 电信 探测器 计量经济学
作者
Tomoki Uemuraa,Chinatsu Watari,Janne J. Näppi,Tetsuo Hironaka,Hyoungseop Kim,Hiroyuki Yoshida
标识
DOI:10.1117/12.2551369
摘要

We developed a novel survival prediction model for images, called pix2surv, based on a conditional generative adversarial network (cGAN), and evaluated its performance based on chest CT images of patients with idiopathic pulmonary fibrosis (IPF). The architecture of the pix2surv model has a time-generator network that consists of an encoding convolutional network, a fully connected prediction network, and a discriminator network. The fully connected prediction network is trained to generate survival-time images from the chest CT images of each patient. The discriminator network is a patchbased convolutional network that is trained to differentiate the “fake pair” of a chest CT image and a generated survivaltime image from the “true pair” of an input CT image and the observed survival-time image of a patient. For evaluation, we retrospectively collected 75 IPF patients with high-resolution chest CT and pulmonary function tests. The survival predictions of the pix2surv model on these patients were compared with those of an established clinical prognostic biomarker known as the gender, age, and physiology (GAP) index by use of a two-sided t-test with bootstrapping. Concordance index (C-index) and relative absolute error (RAE) were used as measures of the prediction performance. Preliminary results showed that the survival prediction by the pix2surv model yielded more than 15% higher C-index value and more than 10% lower RAE values than those of the GAP index. The improvement in survival prediction by the pix2surv model was statistically significant (P < 0.0001). Also, the separation between the survival curves for the low- and high-risk groups was larger with pix2surv than that of the GAP index. These results show that the pix2surv model outperforms the GAP index in the prediction of the survival time and risk stratification of patients with IPF, indicating that the pix2surv model can be an effective predictor of the overall survival of patients with IPF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
7秒前
江枫渔火完成签到 ,获得积分10
8秒前
applepie发布了新的文献求助10
10秒前
麻薯发布了新的文献求助10
10秒前
顾矜应助黑翅鸢采纳,获得30
14秒前
19秒前
明鹄完成签到,获得积分10
19秒前
applepie完成签到,获得积分10
19秒前
26秒前
史九九发布了新的文献求助10
28秒前
顾矜应助大方元风采纳,获得10
29秒前
jingutaimi完成签到,获得积分10
33秒前
明鹄发布了新的文献求助10
33秒前
汉堡包应助puon采纳,获得10
34秒前
Rory完成签到 ,获得积分10
35秒前
balabala完成签到 ,获得积分10
36秒前
mmmmmmgm完成签到 ,获得积分10
37秒前
42秒前
科研通AI6应助史九九采纳,获得10
42秒前
肖玉娇完成签到,获得积分10
45秒前
黑翅鸢完成签到 ,获得积分10
47秒前
肖玉娇发布了新的文献求助10
48秒前
JamesPei应助cccan采纳,获得10
50秒前
ZXK完成签到 ,获得积分10
54秒前
Theresa发布了新的文献求助10
54秒前
1分钟前
在水一方应助从容冰淇淋采纳,获得10
1分钟前
1分钟前
浮游应助Jason采纳,获得10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
想上985完成签到,获得积分10
1分钟前
talent发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374