钒
阴极
材料科学
锰
锌
水溶液
无机化学
冶金
化学
有机化学
物理化学
作者
Na Liu,Bin Li,Zhangxing He,Lei Dai,Haiyan Wang,Ling Wang
标识
DOI:10.1016/j.jechem.2020.10.044
摘要
The growing demand for energy storage has inspired researchers’ exploration of advanced batteries. Aqueous zinc ion batteries (ZIBs) are promising secondary chemical battery system that can be selected and pursued. Rechargeable ZIBs possess merits of high security, low cost, environmental friendliness, and competitive performance, and they are received a lot of attention. However, the development of suitable zinc ion intercalation-type cathode materials is still a big challenge, resulting in failing to meet the commercial needs of ZIBs. Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes. The valence state of vanadium is +2 ~ +5, which can realize multi-electron transfer in the redox reaction and has a high specific capacity. Most of the manganese-based compounds have tunnel structure or three-dimensional space frame, with enough space to accommodate zinc ions. In order to understand the energy storage mechanism and electrochemical performance of these two materials, a specialized review focusing on state-of-the-art developments is needed. This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs. The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted. This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI