Attention Guided Lymph Node Malignancy Prediction in Head and Neck Cancer

医学 判别式 卷积神经网络 人工智能 深度学习 体素 放射科 概化理论 感兴趣区域 正电子发射断层摄影术 人工神经网络 模式识别(心理学) 恶性肿瘤 计算机科学 病理 统计 数学
作者
Liyuan Chen,Michael Dohopolski,Zhiguo Zhou,Kai Wang,Rongfang Wang,David J. Sher,Jing Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:110 (4): 1171-1179 被引量:18
标识
DOI:10.1016/j.ijrobp.2021.02.004
摘要

Purpose Accurate lymph node (LN) malignancy classification is essential for treatment target identification in head and neck cancer (HNC) radiation therapy. Given the constraints imposed by relatively small sample sizes in real-world medical applications, to classify LN malignancy status accurately, we proposed an attention-guided classification (AGC) scheme that (1) incorporates human knowledge (ie, LN contours) into model training to guide model’s “learning” direction, alleviating the critical requirement of large training samples by deep learning approaches; and (2) does not require accurate delineation of LNs in the inference stage but can highlight the discriminative region nearby the LN, which is important for malignancy determination. Methods and Materials In the proposed AGC scheme, there is an attention-guided convolutional neural network (agCNN) module, followed by a classification convolutional neural network (cCNN) module. The input of the proposed AGC scheme is a region of interest (ROI) containing the LN and its surrounding tissues. The agCNN is designed to find the discriminative region in the ROI, which outputs an activation map whose voxel values indicate the importance of the voxels in malignancy prediction. Through multiplying the activation map with the ROI, we obtain the input for the cCNN, which finally outputs the LN malignancy probability. To demonstrate the effectiveness of the proposed scheme, we performed experimental studies using positron emission tomography and contrast-enhanced computed tomography from 129 surgical HNC patients, including 791 LNs, with pathologic ground truth of malignancy status. To evaluate the performance, 5-folder cross validation was used. Results The sensitivity, specificity, accuracy, and area under the receiver operating characteristic (ROC) curve values obtained by the proposed AGC scheme were 0.91, 0.93, 0.92, and 0.98, respectively, significantly outperforming conventional convolutional neural network and radiomics approaches at a significance level of .05 under a paired ROC comparison statistical test. Conclusions We developed an AGC scheme that can highlight the discriminative region in an image for LN malignancy prediction, outperforming a conventional radiomics method that requires accurate segmentation and a standard convolutional neural network model without involving segmentation. Accurate lymph node (LN) malignancy classification is essential for treatment target identification in head and neck cancer (HNC) radiation therapy. Given the constraints imposed by relatively small sample sizes in real-world medical applications, to classify LN malignancy status accurately, we proposed an attention-guided classification (AGC) scheme that (1) incorporates human knowledge (ie, LN contours) into model training to guide model’s “learning” direction, alleviating the critical requirement of large training samples by deep learning approaches; and (2) does not require accurate delineation of LNs in the inference stage but can highlight the discriminative region nearby the LN, which is important for malignancy determination. In the proposed AGC scheme, there is an attention-guided convolutional neural network (agCNN) module, followed by a classification convolutional neural network (cCNN) module. The input of the proposed AGC scheme is a region of interest (ROI) containing the LN and its surrounding tissues. The agCNN is designed to find the discriminative region in the ROI, which outputs an activation map whose voxel values indicate the importance of the voxels in malignancy prediction. Through multiplying the activation map with the ROI, we obtain the input for the cCNN, which finally outputs the LN malignancy probability. To demonstrate the effectiveness of the proposed scheme, we performed experimental studies using positron emission tomography and contrast-enhanced computed tomography from 129 surgical HNC patients, including 791 LNs, with pathologic ground truth of malignancy status. To evaluate the performance, 5-folder cross validation was used. The sensitivity, specificity, accuracy, and area under the receiver operating characteristic (ROC) curve values obtained by the proposed AGC scheme were 0.91, 0.93, 0.92, and 0.98, respectively, significantly outperforming conventional convolutional neural network and radiomics approaches at a significance level of .05 under a paired ROC comparison statistical test. We developed an AGC scheme that can highlight the discriminative region in an image for LN malignancy prediction, outperforming a conventional radiomics method that requires accurate segmentation and a standard convolutional neural network model without involving segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六边形完成签到,获得积分10
刚刚
1秒前
在水一方应助jhp采纳,获得10
1秒前
QQ发布了新的文献求助10
1秒前
知秋完成签到 ,获得积分10
2秒前
左鞅发布了新的文献求助10
2秒前
hahahahaha完成签到,获得积分10
3秒前
MAIA完成签到,获得积分10
4秒前
keeptg发布了新的文献求助10
6秒前
Chihyi发布了新的文献求助10
6秒前
8秒前
没有答案发布了新的文献求助10
8秒前
Guozixin完成签到,获得积分10
8秒前
犹豫山菡完成签到,获得积分10
9秒前
一一发布了新的文献求助10
10秒前
hailang820316完成签到,获得积分10
10秒前
10秒前
11秒前
快银k发布了新的文献求助10
12秒前
正月初九完成签到,获得积分10
15秒前
积极鸵鸟完成签到,获得积分10
15秒前
15秒前
Chihyi完成签到,获得积分10
15秒前
科研通AI2S应助QQ采纳,获得10
16秒前
毛毛虫发布了新的文献求助10
16秒前
17秒前
REBECCA发布了新的文献求助10
17秒前
D1fficulty完成签到,获得积分10
18秒前
科研通AI6应助天峰采纳,获得10
18秒前
抓完发布了新的文献求助10
19秒前
难过夏蓉关注了科研通微信公众号
19秒前
没有答案完成签到,获得积分10
20秒前
20秒前
大自然的搬运工完成签到 ,获得积分10
21秒前
xuxuxu发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
无极微光应助淡淡的新之采纳,获得20
24秒前
Moto_Fang完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419669
求助须知:如何正确求助?哪些是违规求助? 4534982
关于积分的说明 14147461
捐赠科研通 4451639
什么是DOI,文献DOI怎么找? 2441798
邀请新用户注册赠送积分活动 1433412
关于科研通互助平台的介绍 1410641