Risk-Based lung cancer screening: A systematic review

医学 肺癌筛查 肺癌 慢性阻塞性肺病 家族史 癌症 戒烟 肿瘤科 风险评估 物理疗法 内科学 病理 计算机安全 计算机科学
作者
Iakovos Toumazis,Mehrad Bastani,Summer S. Han,Sylvia K. Plevritis
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:147: 154-186 被引量:161
标识
DOI:10.1016/j.lungcan.2020.07.007
摘要

Abstract

Lung cancer remains the leading cause of cancer related deaths worldwide. Lung cancer screening using low-dose computed tomography (LDCT) has been shown to reduce lung cancer specific mortality. In 2013, the United States Preventive Services Task Force (USPSTF) recommended annual lung cancer screening with LDCT for smokers aged between 55 years to 80 years, with at least 30 pack-years of smoking exposure that currently smoke or who have quit smoking within 15 years. Risk-based lung cancer screening is an alternative approach that defines screening eligibility based on the personal risk of individuals. Selection of individuals for lung cancer screening based on their personal lung cancer risk has been shown to improve the sensitivity and specificity associated with the eligibility criteria of the screening program as compared to the 2013 USPSTF criteria. Numerous risk prediction models have been developed to estimate the lung cancer risk of individuals incorporating sociodemographic, smoking, and clinical risk factors associated with lung cancer, including age, smoking history, sex, race/ethnicity, personal and family history of cancer, and history of emphysema and chronic obstructive pulmonary disease (COPD), among others. Some risk prediction models include biomarker information, such as germline mutations or protein-based biomarkers as independent risk predictors, in addition to clinical, smoking, and sociodemographic risk factors. While, the majority of lung cancer risk prediction models are suitable for selecting high-risk individuals for lung cancer screening, some risk models have been developed to predict the probability of malignancy of screen-detected solidary pulmonary nodules or to optimize the screening frequency of eligible individuals by incorporating past screening findings. In this systematic review, we provide an overview of existing risk prediction models and their applications to lung cancer screening. We discuss potential strengths and limitations of lung cancer screening using risk prediction models and future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助asd采纳,获得10
刚刚
在水一方应助阳光怀亦采纳,获得30
1秒前
打打应助djbj2022采纳,获得20
1秒前
sirhai发布了新的文献求助10
2秒前
细腻烙完成签到,获得积分10
2秒前
3秒前
仲大船完成签到,获得积分10
3秒前
科目三应助lijunwu采纳,获得10
3秒前
boxi完成签到,获得积分10
3秒前
yynfyy完成签到,获得积分10
4秒前
谢谢李完成签到 ,获得积分10
5秒前
5秒前
6秒前
照镜子丫dorime完成签到,获得积分10
6秒前
7秒前
7秒前
衡阳完成签到,获得积分10
7秒前
8秒前
可可托海完成签到 ,获得积分10
8秒前
Hollen完成签到 ,获得积分10
8秒前
甲乙丙丁发布了新的文献求助10
8秒前
sbw发布了新的文献求助20
8秒前
KeLiang完成签到,获得积分10
11秒前
长木木发布了新的文献求助10
11秒前
11秒前
dnnnsns完成签到,获得积分10
11秒前
jx314完成签到,获得积分10
12秒前
淘气科研发布了新的文献求助10
13秒前
苹果果汁完成签到,获得积分10
13秒前
鳗鱼不尤完成签到,获得积分10
13秒前
cheveux发布了新的文献求助10
14秒前
某医科大学的学硕小白完成签到,获得积分10
15秒前
sylnd126发布了新的文献求助10
16秒前
王小毕完成签到,获得积分10
18秒前
19秒前
Huco完成签到,获得积分10
19秒前
19秒前
21秒前
呆崽发布了新的文献求助100
22秒前
小马甲应助洗刷刷采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286