亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data

学习迁移 计算机科学 人工智能 歧管对齐 领域(数学分析) 断层(地质) 歧管(流体力学) 传输(计算) 分布(数学) 深度学习 模式识别(心理学) 鉴定(生物学) 非线性降维 工程类 数学 降维 地质学 数学分析 生物 机械工程 地震学 并行计算 植物
作者
Ke Zhao,Hongkai Jiang,Zhenghong Wu,Tengfei Lu
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:33 (1): 151-165 被引量:60
标识
DOI:10.1007/s10845-020-01657-z
摘要

Accurate identification of rolling bearing faults is quite significant for the stable operation of mechanical systems. However, for practical diagnosis issues, it is difficult to obtain abundant labeled data due to the change of operating conditions and complex working environment, which puts forward higher requirements on the ability of the diagnosis methods. To tackle the mentioned problem, a novel transfer learning method based on a little labeled data is proposed, which uses bidirectional gated recurrent unit (BiGRU) and Manifold Embedded Distribution Alignment (MEDA). Firstly, frequency spectrum datasets are utilized to remove the redundant information of raw vibration signals. Secondly, the BiGRU network is constructed to generate auxiliary samples that are utilized as source domain. Finally, MEDA, as the most powerful non-deep transfer learning method, is applied to align the distribution of these auxiliary samples generated by BiGRU and the unlabeled samples from target domain. Experiment results indicate the excellent performance of the proposed method under a little labeled data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
28秒前
西瓜霜发布了新的文献求助10
32秒前
43秒前
彭于晏应助读书的时候采纳,获得80
55秒前
落沧完成签到 ,获得积分10
55秒前
充电宝应助西瓜霜采纳,获得10
58秒前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
wz完成签到,获得积分10
1分钟前
JamesPei应助manjusaka采纳,获得10
2分钟前
bkagyin应助读书的时候采纳,获得10
2分钟前
2分钟前
manjusaka发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
嘻嘻哈哈发布了新的文献求助10
3分钟前
3分钟前
3分钟前
大模型应助读书的时候采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
刻苦的艳发布了新的文献求助10
5分钟前
酷波er应助刻苦的艳采纳,获得30
5分钟前
5分钟前
6分钟前
果酱完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672