AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network

计算机科学 分割 人工智能 编码器 棱锥(几何) 卷积神经网络 推论 特征(语言学) 卷积(计算机科学) 帧速率 计算机视觉 边缘设备 编码(集合论) 模式识别(心理学) 人工神经网络 物理 哲学 光学 操作系统 集合(抽象数据类型) 程序设计语言 云计算 语言学
作者
Quan Zhou,Yu Wang,Yawen Fan,Xiaofu Wu,Suofei Zhang,Bin Kang,Longin Jan Latecki
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:96: 106682-106682 被引量:92
标识
DOI:10.1016/j.asoc.2020.106682
摘要

The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper presents an attention-guided lightweight network, namely AGLNet, which employs an encoder–decoder architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual module to abstract feature representations, where two new operations, channel split and shuffle, are utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, instead of using complicated dilated convolution and artificially designed architecture, two types of attention mechanism are subsequently employed in the decoder to upsample features to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to explore hierarchical spatial attention from high-level output, still remaining fewer model parameters. To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted as global guidance for high-level features. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS, and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and available at https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助千逐采纳,获得10
1秒前
1秒前
狂野吐司完成签到,获得积分10
2秒前
墨羽翔天完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
Kawhi发布了新的文献求助10
4秒前
Gin发布了新的文献求助10
4秒前
allwind发布了新的文献求助10
5秒前
6秒前
6秒前
星星发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
NexusExplorer应助stws采纳,获得10
8秒前
凉水发布了新的文献求助10
10秒前
ssk发布了新的文献求助10
11秒前
千逐发布了新的文献求助10
12秒前
14秒前
情怀应助花花花花采纳,获得10
15秒前
JamesPei应助文静采纳,获得10
15秒前
15秒前
16秒前
18秒前
Fiang完成签到,获得积分20
18秒前
18秒前
goodgay133应助vspill采纳,获得10
19秒前
美丽萝莉发布了新的文献求助10
20秒前
桐桐应助AATRAHASIS采纳,获得10
21秒前
凉水完成签到,获得积分10
21秒前
21秒前
Fiang发布了新的文献求助10
21秒前
longge233233完成签到,获得积分10
22秒前
劲秉应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267427
求助须知:如何正确求助?哪些是违规求助? 2906845
关于积分的说明 8339782
捐赠科研通 2577416
什么是DOI,文献DOI怎么找? 1400949
科研通“疑难数据库(出版商)”最低求助积分说明 654995
邀请新用户注册赠送积分活动 633900