AGLNet: Towards real-time semantic segmentation of self-driving images via attention-guided lightweight network

计算机科学 分割 人工智能 编码器 棱锥(几何) 卷积神经网络 推论 特征(语言学) 卷积(计算机科学) 帧速率 计算机视觉 边缘设备 编码(集合论) 模式识别(心理学) 人工神经网络 云计算 语言学 哲学 物理 集合(抽象数据类型) 光学 程序设计语言 操作系统
作者
Quan Zhou,Yu Wang,Yawen Fan,Xiaofu Wu,Suofei Zhang,Bin Kang,Longin Jan Latecki
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:96: 106682-106682 被引量:92
标识
DOI:10.1016/j.asoc.2020.106682
摘要

The extensive computational burden limits the usage of convolutional neural networks (CNNs) in edge devices for image semantic segmentation, which plays a significant role in many real-world applications, such as augmented reality, robotics, and self-driving. To address this problem, this paper presents an attention-guided lightweight network, namely AGLNet, which employs an encoder–decoder architecture for real-time semantic segmentation. Specifically, the encoder adopts a novel residual module to abstract feature representations, where two new operations, channel split and shuffle, are utilized to greatly reduce computation cost while maintaining higher segmentation accuracy. On the other hand, instead of using complicated dilated convolution and artificially designed architecture, two types of attention mechanism are subsequently employed in the decoder to upsample features to match input resolution. Specifically, a factorized attention pyramid module (FAPM) is used to explore hierarchical spatial attention from high-level output, still remaining fewer model parameters. To delineate object shapes and boundaries, a global attention upsample module (GAUM) is adopted as global guidance for high-level features. The comprehensive experiments demonstrate that our approach achieves state-of-the-art results in terms of speed and accuracy on three self-driving datasets: CityScapes, CamVid, and Mapillary Vistas. AGLNet achieves 71.3%, 69.4%, and 30.7% mean IoU on these datasets with only 1.12M model parameters. Our method also achieves 52 FPS, 90 FPS, and 53 FPS inference speed, respectively, using a single GTX 1080Ti GPU. Our code is open-source and available at https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小蘑菇应助正月的大雪采纳,获得10
1秒前
童小肥发布了新的文献求助10
1秒前
JamesPei应助幽默的沁采纳,获得10
1秒前
2秒前
勇敢牛牛发布了新的文献求助30
2秒前
海比天蓝发布了新的文献求助50
2秒前
2秒前
薏米人儿发布了新的文献求助10
2秒前
NexusExplorer应助代桃采纳,获得10
3秒前
在水一方应助听风随影采纳,获得10
3秒前
HYD发布了新的文献求助10
3秒前
3秒前
唐破茧发布了新的文献求助30
3秒前
long驳回了顾矜应助
4秒前
欣慰碧琴完成签到,获得积分10
4秒前
accelia完成签到,获得积分10
4秒前
wu完成签到,获得积分10
4秒前
nanjiren发布了新的文献求助10
5秒前
5秒前
明理的亦寒完成签到 ,获得积分10
5秒前
英俊的铭应助聪慧的正豪采纳,获得10
5秒前
6秒前
6秒前
胸有激雷面如平湖完成签到,获得积分10
6秒前
6秒前
6秒前
Zzz完成签到,获得积分10
6秒前
6秒前
jyh完成签到 ,获得积分10
7秒前
Ansaista发布了新的文献求助30
7秒前
呸呸晓鹏完成签到,获得积分20
7秒前
Akim应助美满的惜霜采纳,获得10
7秒前
冷酷学姐完成签到 ,获得积分10
8秒前
8秒前
小杭76应助ZIVON采纳,获得10
8秒前
花楹发布了新的文献求助10
8秒前
9秒前
欣喜石头发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563