材料科学
光纤
生物相容性
制作
组织工程
纳米技术
自愈水凝胶
芯(光纤)
生物医学工程
复合材料
光学
高分子化学
物理
病理
冶金
医学
替代医学
作者
Guoyin Chen,Gang Wang,Xinrong Tan,Kai Hou,Qingshuo Meng,Peng Zhao,Shun Wang,Jiayi Zhang,Zhan Zhou,Tao Chen,Yanhua Cheng,Benjamin S. Hsiao,Elsa Reichmanis,Meifang Zhu
摘要
Abstract Hydrogel optical light-guides have received substantial interest for applications such as deep-tissue biosensors, optogenetic stimulation and photomedicine due to their biocompatibility, (micro)structure control and tissue-like Young's modulus. However, despite recent developments, large-scale fabrication with a continuous synthetic methodology, which could produce core-sheath hydrogel fibers with the desired optical and mechanical properties suitable for deep-tissue applications, has yet to be achieved. In this study, we report a versatile concept of integrated light-triggered dynamic wet spinning capable of continuously producing core-sheath hydrogel optical fibers with tunable fiber diameters, and mechanical and optical propagation properties. Furthermore, this concept also exhibited versatility for various kinds of core-sheath functional fibers. The wet spinning synthetic procedure and fabrication process were optimized with the rational design of the core/sheath material interface compatibility [core = poly(ethylene glycol diacrylate-co-acrylamide); sheath = Ca-alginate], optical transparency, refractive index and spinning solution viscosity. The resulting hydrogel optical fibers exhibited desirable low optical attenuation (0.18 ± 0.01 dB cm−1 with 650 nm laser light), excellent biocompatibility and tissue-like Young's modulus (<2.60 MPa). The optical waveguide hydrogel fibers were successfully employed for deep-tissue cancer therapy and brain optogenetic stimulation, confirming that they could serve as an efficient versatile tool for diverse deep-tissue therapy and brain optogenetic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI