石墨烯
纳米孔
材料科学
水滑石
选择性
膜
氧化物
纳米反应器
聚醚酰亚胺
纳米技术
化学工程
纳米颗粒
兴奋剂
纳米材料
纳米孔
无机化学
化学
有机化学
催化作用
光电子学
复合材料
冶金
聚合物
工程类
生物化学
作者
Hongxin Tan,Xin Zhang,Zhan Li,Qing Liang,Jinsheng Wu,Yanli Yuan,Shiwei Cao,Jia Chen,Juewen Liu,Hongdeng Qiu
出处
期刊:iScience
[Elsevier]
日期:2020-12-11
卷期号:24 (1): 101920-101920
被引量:34
标识
DOI:10.1016/j.isci.2020.101920
摘要
Rare earth separation is still a major challenge in membrane science. Nitrogen-doped nanoporous graphene (NDNG) is a promising material for membrane separation, but it has not yet been tested for rare earth separation, and it is limited by multi-complex synthesis. Herein, we developed a one-step, facile, and scalable approach to synthesize NDNG with tunable pore size and controlled nitrogen content using confinement combustion. Nanoporous hydrotalcite from Zn(NO3)2 is formed between layers of graphene oxide (GO) absorbed with phenylalanine via confinement growth, thus preparing the sandwich hydrotalcite/phenylalanine/GO composites. Subsequently, area-confinement combustion of hydrotalcite nanopores is used to etch graphene nanopores, and the hydrotalcite interlayer as a closed flat nanoreactor induces two-dimensional space confinement doping of planar nitrogen into graphene. The membrane prepared by NDNG achieves separation of Sc3+ from the other rare earth ions with excellent selectivity (∼3.7) through selective electrostatic interactions of pyrrolic-N, and separation selectivity of ∼1.7 for Tm3+/Sm3+.
科研通智能强力驱动
Strongly Powered by AbleSci AI