Background Saponins are secondary metabolites from plants added to shampoos and beverages to make them foam, and the sapogenins released from them upon acid hydrolysis are commonly used as starting materials for steroidal drugs. However, current methods embed the saponin in a thick material consisting of multiple impurities. This limits access to the saponin, reducing the efficiency of hydrolysis and requiring large amounts of heat, organic solvents and effort to recover the sapogenin. For centuries, herbalists have been making tinctures by soaking plant materials at room temperature, in mixtures of alcohol and water. Many herbal tinctures contain saponins floating freely in solution, free. The saponin from sarsaparilla (Smilax spp), sarsasaponin, yields the sapogenin, sarsasapogenin, upon acid hydrolysis. The retail price of sarsasapogenin is very high but would be lower if the gum problem could be avoided. Materials and methods We incubated sarsaparilla tincture under different conditions of temperature, acidity and duration then used quantitative nuclear magnetic resonance (qNMR) to measure the amount of sarsasapogenin produced by hydrolysis as well as the amount of its epimer, smilagenin. Results and discussion Most, if not all the sarsasaponin in sarsaparilla root powder is extracted into a solution of 45% ethanol (55% water) at room temperature and stays suspended without formation of any particles (gum). Acid hydrolysis of the saponin in this solution is very efficient, approaching 100%. The sarsasapogenin released by hydrolysis and the smilagenin produced by its epimerisation, migrate into the chloroform phase. Conclusion Sarsaparilla saponin diffuses into and disperses in a solution of alcohol:water (45:55) at room temperature. Hydrolysis of saponins in tincture provides a simple, inexpensive and environmentally friendly alternative.