Insights into the Influence of CeO2Crystal Facet on CO2Hydrogenation to Methanol over Pd/CeO2Catalysts

催化作用 面(心理学) 密度泛函理论 甲醇 氧气 空位缺陷 材料科学 金属 Crystal(编程语言) 化学 纳米颗粒 结晶学 化学工程 纳米技术 计算化学 有机化学 心理学 计算机科学 冶金 工程类 社会心理学 人格 程序设计语言 五大性格特征
作者
Feng Jiang,Shanshan Wang,Bing Liu,Jie Liu,Li Wang,Yang Xiao,Yuebing Xu,Xiaohao Liu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:10 (19): 11493-11509 被引量:779
标识
DOI:10.1021/acscatal.0c03324
摘要

CeO2 is an excellent potential material for CO2 hydrogenation attributed to the highly tunable properties including metal–support interaction and abundant oxygen vacancy. In this work, four CeO2 supports with structurally well-defined different shapes and crystal facets are hydrothermally prepared, and their effects on the composition of Pd species and oxygen vacancy over Pd/CeO2 catalysts have been intensively investigated in the reduction of CO2 to methanol. The 2Pd/CeO2-R (rods) shows the highest concentration and number of oxygen vacancies, where the (110) facet with high surface oxygen mobility and low oxygen vacancy formation energy is exposed over the CeO2-R surface. The oxygen mobility at the interface of (111) and (100) facets mainly observed on 2Pd/CeO2-P (polyhedrons) is higher than the single (111) and (100) facets mainly observed on 2Pd/CeO2-O (octahedrons) and 2Pd/CeO2-C (cubs), respectively. The presence of Pd highly promotes the formation of oxygen vacancies by providing dissociated H atoms to facilitate the removal of surface O in ceria support under a H2 atmosphere. Both the PdxCe1–xOδ solid solution dominated on CeO2-R and the PdO species dominated on CeO2-O are reduced to metallic Pd after reduction with 6–10 nm average particle size. As revealed by density functional theory (DFT) calculations, in contrast to the single Pd0 atom on CeO2 and the thermodynamically most unstable PdxCe1−xOδ solid solution, the Pd0 nanoparticles are the most stable species under the realistic reaction conditions. The 2Pd/CeO2-R shows the highest catalytic activity as the abundantly available oxygen vacancies function as CO2 adsorption and activation sites. Moreover, oxygen vacancy reactivity is correlated with its formation energy. The lower formation energy facilitates the formation of oxygen vacancy; however, the reactivity of each oxygen vacancy is lower as the TOFoxygen vacancy of 2Pd/CeO2-O is 15 times as that of 2Pd/CeO2-R. Thus, a suitable oxygen vacancy formation energy is likely favorable for enhancing CO2 reactivity. DFT calculations indicate that the CH3OH formation is most probably from the formate (HCOO*) pathway via the C–O bond cleavage in H2COOH*, with the reduction of HCOO* to HCOOH* as the rate-limiting step. These results would provide experimental and theoretical insights into the rational design of an effective catalyst for CO2 hydrogenation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一一完成签到,获得积分10
1秒前
惜肉龟发布了新的文献求助10
1秒前
1秒前
2秒前
aloopp发布了新的文献求助10
2秒前
2秒前
慕青应助鳗鱼铸海采纳,获得10
3秒前
乐乐应助英俊皮卡丘采纳,获得10
3秒前
思源应助聪慧的雪糕采纳,获得10
4秒前
Ava应助高天雨采纳,获得20
4秒前
yyang发布了新的文献求助10
4秒前
xn发布了新的文献求助10
5秒前
XinChenLee完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助沉静的代桃采纳,获得10
7秒前
7秒前
852应助坦率铅笔采纳,获得10
7秒前
7秒前
归尘应助sunburst采纳,获得30
8秒前
哚圆圆完成签到,获得积分20
8秒前
mraze发布了新的文献求助10
9秒前
深情安青应助圣诞节采纳,获得10
9秒前
9秒前
paobashan发布了新的文献求助30
10秒前
虚幻唯雪完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
哚圆圆发布了新的文献求助10
11秒前
12秒前
tianquanbi发布了新的文献求助10
12秒前
李爱国应助eywct采纳,获得10
12秒前
13秒前
13秒前
CipherSage应助熊国开采纳,获得10
13秒前
Sweet完成签到 ,获得积分10
13秒前
gzslwddhjx发布了新的文献求助10
14秒前
Islet发布了新的文献求助10
14秒前
15秒前
15秒前
李爱国应助王雪儿哈哈哈采纳,获得10
16秒前
SciGPT应助llll采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300