RNA-binding proteins balance brain function in health and disease

RNA结合蛋白 生物 突触可塑性 基因表达调控 神经科学 翻译(生物学) 医学 神经退行性变 核糖核酸 遗传学 基因 信使核糖核酸 疾病 病理 受体
作者
Rico Schieweck,Jovica Ninkovic,Michael A. Kiebler
出处
期刊:Physiological Reviews [American Physiological Society]
卷期号:101 (3): 1309-1370 被引量:50
标识
DOI:10.1152/physrev.00047.2019
摘要

Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA‐binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助LiXii采纳,获得10
刚刚
1秒前
打打应助称心怀蕾采纳,获得10
1秒前
疯猴子果汁完成签到 ,获得积分10
1秒前
1秒前
小马甲应助Let It Be采纳,获得10
1秒前
liuxia完成签到,获得积分10
2秒前
深海鱼发布了新的文献求助30
2秒前
linlin发布了新的文献求助10
2秒前
打打应助rt三角采纳,获得10
3秒前
嘟嘟发布了新的文献求助10
3秒前
韩1完成签到,获得积分10
4秒前
丁一完成签到,获得积分10
4秒前
5秒前
YG123发布了新的文献求助10
5秒前
乐观幻天发布了新的文献求助10
7秒前
文献哈巴狗完成签到,获得积分10
8秒前
敏感的寒松完成签到,获得积分10
8秒前
kuka007发布了新的文献求助10
8秒前
507完成签到,获得积分20
9秒前
Jasper应助赵姗姗采纳,获得10
9秒前
奕火完成签到,获得积分10
10秒前
ZZZ完成签到,获得积分10
10秒前
12秒前
12秒前
闪闪冰旋发布了新的文献求助10
13秒前
凤云汐完成签到 ,获得积分10
14秒前
SCIAI应助结实巨人采纳,获得10
14秒前
fugu0完成签到,获得积分10
15秒前
研二发核心完成签到,获得积分10
15秒前
15秒前
Aganlin完成签到 ,获得积分0
15秒前
16秒前
nanlio完成签到,获得积分10
16秒前
17秒前
糖炒莉子完成签到,获得积分10
17秒前
幽默柚子发布了新的文献求助30
18秒前
Akim应助机灵猕猴桃采纳,获得10
18秒前
伶俐从筠应助kuka007采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648