A Two-Ended Data-Driven Accelerated Sampling Method for Exploring the Transition Pathways between Two Known States of Protein

分子动力学 计算机科学 亚稳态 采样(信号处理) 灵活性(工程) 生物系统 马尔可夫链 统计物理学 计算生物学 化学 物理 计算化学 生物 数学 机器学习 有机化学 滤波器(信号处理) 统计 计算机视觉
作者
Yigao Yuan,Qiang Zhu,Ruiheng Song,Jing Ma,Hao Dong
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (7): 4631-4640 被引量:12
标识
DOI:10.1021/acs.jctc.9b01184
摘要

Conformational transitions of protein between different states are often associated with their biological functions. These dynamic processes, however, are usually not easy to be well characterized by experimental measurements, mainly because of inadequate temporal and spatial resolution. Meantime, sampling of configuration space with molecular dynamics (MD) simulations is still a challenge. Here we proposed a robust two-ended data-driven accelerated (teDA2) conformational sampling method, which drives the structural change in an adaptively updated feature space without introducing a bias potential. teDA2 was applied to explore adenylate kinase (ADK), a model with well characterized "open" and "closed" states. A single conformational transition event of ADK could be achieved within only a few or tens of nanoseconds sampled with teDA2. By analyzing hundreds of transition events, we reproduced different mechanisms and the associated pathways for domain motion of ADK reported in the literature. The multiroute characteristic of ADK was confirmed by the fact that some metastable states identified with teDA2 resemble available crystal structures determined at different conditions. This feature was further validated with Markov state modeling with independent MD simulations. Therefore, our work provides strong evidence for the conformational plasticity of protein, which is mainly due to the inherent degree of flexibility. As a reliable and efficient enhanced sampling protocol, teDA2 could be used to study the dynamics between functional states of various biomolecular machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马霄鑫发布了新的文献求助10
1秒前
2秒前
3秒前
打打应助名侦探柯基采纳,获得10
6秒前
上官若男应助刘一采纳,获得10
6秒前
勤奋的千山完成签到,获得积分10
6秒前
卷卷516发布了新的文献求助10
6秒前
玉米完成签到,获得积分10
7秒前
爱新觉罗朱完成签到,获得积分10
7秒前
酷波er应助med_wudi采纳,获得10
7秒前
成成完成签到,获得积分0
9秒前
11秒前
13秒前
13秒前
呆萌雪晴完成签到,获得积分10
13秒前
烟花应助玉米采纳,获得10
14秒前
16秒前
17秒前
苍蝇搓手发布了新的文献求助10
17秒前
pluto应助忧虑的代容采纳,获得30
18秒前
CodeCraft应助Zzzzz采纳,获得10
18秒前
啊噢发布了新的文献求助10
19秒前
tsw发布了新的文献求助10
19秒前
20秒前
21秒前
老头完成签到,获得积分10
21秒前
研友_VZG7GZ应助王加通采纳,获得10
22秒前
24秒前
充电宝应助lsm_小助手采纳,获得10
25秒前
香蕉觅云应助亦屿森采纳,获得10
25秒前
余味完成签到,获得积分10
25秒前
26秒前
NexusExplorer应助ZAC999采纳,获得10
26秒前
27秒前
pluto应助1953采纳,获得10
28秒前
可爱的函函应助卷卷516采纳,获得10
29秒前
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458818
求助须知:如何正确求助?哪些是违规求助? 3053567
关于积分的说明 9036986
捐赠科研通 2742746
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694537