X射线光电子能谱
阴极
插层(化学)
化学工程
中子衍射
氧化还原
化学
离子
氧化物
材料科学
分析化学(期刊)
晶体结构
结晶学
无机化学
物理化学
有机化学
工程类
色谱法
冶金
作者
Kai Liu,Susheng Tan,Jisue Moon,Charl J. Jafta,Cheng Li,Takeshi Kobayashi,Hailong Lyu,Craig A. Bridges,Shuang Men,Wei Guo,Yifan Sun,Jinli Zhang,M. Paranthaman,Xiao‐Guang Sun,Sheng Dai
标识
DOI:10.1002/aenm.202000135
摘要
Abstract A series of F‐substituted Na 2/3 Ni 1/3 Mn 2/3 O 2− x F x ( x = 0, 0.03, 0.05, 0.07) cathode materials have been synthesized and characterized by solid‐state 19 F and 23 Na NMR, X‐ray photoelectron spectroscopy, and neutron diffraction. The underlying charge compensation mechanism is systematically unraveled by X‐ray absorption spectroscopy and electron energy loss spectroscopy (EELS) techniques, revealing partial reduction from Mn 4+ to Mn 3+ upon F‐substitution. It is revealed that not only Ni but also Mn participates in the redox reaction process, which is confirmed for the first time by EELS techniques, contributing to an increase in discharge specific capacity. The detailed structural transformations are also revealed by operando X‐ray diffraction experiments during the intercalation and deintercalation process of Na + , demonstrating that the biphasic reaction is obviously suppressed in the low voltage region via F‐substitution. Hence, the optimized sample with 0.05 mol f.u. −1 fluorine substitution delivers an ultrahigh specific capacity of 61 mAh g −1 at 10 C after 2000 cycles at 30 °C, an extraordinary cycling stability with a capacity retention of 75.6% after 2000 cycles at 10 C and 55 °C, an outstanding full battery performance with 89.5% capacity retention after 300 cycles at 1 C. This research provides a crucial understanding of the influence of F‐substitution on the crystal structure of the P2‐type materials and opens a new avenue for sodium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI