Using Decision Trees Supported by Data Mining to Improve Function-Based Design

计算机科学 组分(热力学) 功能(生物学) 一致性(知识库) 产品设计 产品(数学) 新产品开发 多样性(控制论) 数据科学 系统工程 软件工程 人工智能 工程类 几何学 数学 营销 业务 物理 热力学 生物 进化生物学
作者
Vincenzo Ferrero,Naser Alqseer,Melissa Tensa,Bryony DuPont
标识
DOI:10.1115/detc2020-22498
摘要

Abstract Engineering designers currently use downstream information about product and component functions to facilitate ideation and concept generation of analogous products. These processes, often called Function-Based Design, can be reliant on designer definitions of product function, which are inconsistent from designer to designer. In this paper, we employ supervised learning algorithms to reduce the variety of component functions that are available to designers in a design repository, thus enabling designers to focus their function-based design efforts on more accurate, reduced sets of potential functions. To do this, we generate decisions trees and rules that define the functions of components based on the identity of neighboring components. The resultant decision trees and rulesets reduce the number of feasible functions for components within a product, which is of particular interest for use by novice designers, as reducing the feasible functional space can help focus the design activities of the designer. This reduction was evident in both case studies: one exploring a component that is known to the designer, and the other looking at defining function of an unrecognizable component. The work presented here contributes to the recent popularity of using product data in data-driven design methodologies, especially those focused on supplementing designer cognition. Importantly, we found that this methodology is reliant on repository data quality, and the results indicate a need to continue the development of design repository data schemas with improved data consistency and fidelity. This research is a necessary precursor for the development of function-based design tools, including automated functional modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwq完成签到,获得积分10
刚刚
yxl发布了新的文献求助10
刚刚
lllllkkkj完成签到,获得积分10
1秒前
1秒前
深情安青应助仪宝采纳,获得10
1秒前
香蕉觅云应助朴西西采纳,获得10
1秒前
2秒前
若雨涵完成签到,获得积分20
2秒前
WJ发布了新的文献求助10
3秒前
酷波er应助想不起来名字采纳,获得10
3秒前
4秒前
发发发布了新的文献求助10
5秒前
guoxuefan发布了新的文献求助10
6秒前
6秒前
6秒前
Amadeus完成签到,获得积分10
6秒前
6秒前
juile完成签到,获得积分20
7秒前
7秒前
何梓发布了新的文献求助10
7秒前
zhaoyuepu完成签到 ,获得积分10
7秒前
7秒前
8秒前
顾矜应助斗罗大陆采纳,获得10
9秒前
juile发布了新的文献求助10
10秒前
10秒前
浮游应助WJ采纳,获得10
10秒前
花样年华发布了新的文献求助10
11秒前
12秒前
内向的老四发布了新的文献求助100
12秒前
十二999完成签到,获得积分10
12秒前
klyang应助wyj12342采纳,获得50
13秒前
yongon发布了新的文献求助10
13秒前
浮游应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
ccm应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196363
求助须知:如何正确求助?哪些是违规求助? 4378049
关于积分的说明 13635062
捐赠科研通 4233514
什么是DOI,文献DOI怎么找? 2322324
邀请新用户注册赠送积分活动 1320441
关于科研通互助平台的介绍 1270807